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a  b  s  t  r  a  c  t

The  continuous  and  automated  monitoring  of  canopy  phenology  is  of increasing  scientific  interest  for  the
multiple  implications  of  vegetation  dynamics  on  ecosystem  carbon  and  energy  fluxes.  For  this purpose
we  evaluated  the  applicability  of  digital  camera  imagery  for monitoring  and  modeling  phenology  and
physiology  of a subalpine  grassland  over  the 2009  and  2010  growing  seasons.

We  tested  the  relationships  between  color  indices  (i.e.  the  algebraic  combinations  of  RGB  brightness
levels)  tracking  canopy  greenness  extracted  from  repeated  digital  images  against  field  measurements  of
green  and  total biomass,  leaf  area  index  (LAI),  greenness  visual  estimation,  vegetation  indices  computed
from  continuous  spectroradiometric  measurements  and  CO2 fluxes  observed  with  the  eddy  covariance
technique.  A  strong  relationship  was  found  between  canopy  greenness  and  (i)  structural  parameters  (i.e.,
LAI)  and  (ii)  canopy  photosynthesis  (i.e.  Gross  Primary  Production;  GPP).  Color  indices  were  also  well
correlated  with  vegetation  indices  typically  used  for monitoring  landscape  phenology  from  satellite,
suggesting  that  digital  repeat  photography  provides  high-quality  ground  data  for  evaluation  of  satellite
phenology  products.

We  demonstrate  that  by  using  canopy  greenness  we  can  refine  phenological  models  (Growing  Sea-
son  Index,  GSI)  by describing  canopy  development  and  considering  the  role of  ecological  factors  (e.g.,
snow, temperature  and  photoperiod)  controlling  grassland  phenology.  Moreover,  we  show  that  canopy
greenness  combined  with  radiation  use  efficiency  (RUE)  obtained  from  spectral  indices  related  to  photo-
chemistry  (i.e.,  scaled  Photochemical  Reflectance  Index)  or  meteorology  (i.e.,  MOD17  RUE)  can  be  used

to predict  daily  GPP.

Building  on  previous  work  that  has demonstrated  that  seasonal  variation  in the  structure  and  function
of  plant  canopies  can  be quantified  using  digital  camera  imagery,  we  have  highlighted  the potential  use
of these  data  for the development  and  parameterization  of  phenological  and  RUE  models,  and  thus  point
toward  an  extension  of  the  proposed  methodologies  to the dataset  collected  within  PhenoCam  Network.
∗ Corresponding author at: European Commission, DG Joint Research Centre, Insti-
ute for Environment and Sustainability, Climate Change and Air Quality Unit –
P290, Via E. Fermi, 2749, I-21027 Ispra, VA, Italy. Tel.: +39 0332 78 9448.

E-mail address: mirco.migliavacca@jrc.ec.europa.eu (M. Migliavacca).
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1. Introduction

Phenology is the study of the timing of recurring biological

events and the causes of their temporal change regarding biotic
and abiotic forces (Lieth, 1976).

Since the timing of the main plant phenological events and
their interannual variability are controlled by meteorological and
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http://www.sciencedirect.com/science/journal/01681923
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nvironmental forcing (e.g. Chuine et al., 2004; Penuelas et al.,
009), phenology has been shown to be an important indicator for
he biological impacts of climate change (e.g. IPCC, 2007).

The European Alps are assumed to be particularly sensitive
o changes in climate (e.g. Beniston, 2005; Rammig et al., 2010),
lthough much uncertainty still exists as to the possible effects
f such changes on ecosystems. It is therefore particularly press-
ng to disentangle the ecological and climatic factors controlling
lpine and subalpine grassland phenology, to quantify changes in
rowing season length and also the effect that phenological changes
ay  have on the ecosystem carbon balance. Some effects of climate

hange on the Alps have already been observed such as migration
f species to higher elevations (Walther et al., 2005) and trends
oward longer growing seasons (e.g. Stockli and Vidale, 2004). In
articular, the impacts of climate change on alpine and subalpine
rasslands will be very likely stronger than on other mountain veg-
tation because they are highly diverse (Körner, 2005), because of
asture abandonment and the wide range of microclimatic condi-
ions that occur over short distances (e.g. Motta and Nola, 2001;
ittoz et al., 2008; Wohlfahrt et al., 2003; Zeeman et al., 2010).

Most of the studies conducted on the Alps dealing with the
evelopment of strategies for long-term phenological monitoring
ocus on tree species (Ahrends et al., 2008; Busetto et al., 2010; Fonti
t al., 2010; Migliavacca et al., 2008; Moser et al., 2010), while only
ew studies on grassland phenology of the subalpine and alpine belt
ave been reported (e.g. Cernusca et al., 2008; Fontana et al., 2008;

onas et al., 2008). This is primarily due to the difficulty in develop-
ng a protocol for field observation of grassland phenology focused
n the whole canopy and not on a single species.

The relationships between the timing of key phenological events
bud-burst, senescence, etc.), climate and, more recently carbon
uxes have been the subject of intense research, while the relation-
hips between sub-seasonal variations of canopy development and
limate have received little attention. The lack of understanding is
eflected in the unsatisfactory description of phenology and canopy
evelopment in ecosystem models and the resulting, often unreal-

stic estimation of carbon fluxes. This is particularly true for gross
rimary production (GPP), which is largely dependent on the accu-
ate description of canopy development (e.g. Kucharik et al., 2006;
igliavacca et al., 2009; Ryu et al., 2008). Thus, we  ask how can we
ore accurately predict and model seasonal canopy development.
The use of “near-surface” remote sensing with digital cameras

as great potential in improving phenological monitoring because
uch observations make it possible to collect automated data at
igh temporal resolution and in a broad range of ecosystems (e.g.
radley et al., 2010; Garrity et al., 2010; Ryu et al., 2010; Richardson
t al., 2009; Sonnentag et al., 2011).

The use of repeated digital images collected by conventional
ameras has been shown to be promising for phenological research
n various ecosystems including forests (Ahrends et al., 2008, 2009;
raham et al., 2010; Nagai et al., 2010; Richardson et al., 2007, 2009)
nd arid grasslands (e.g. Kurc and Benton, 2010). In the agricultural
eld several authors have shown the potential of complete robotic
eed control systems based on digital images in achieving a high

evel of automation (e.g. Slaughter et al., 2008).
However, to the best of our knowledge, there has been no

ttempt to use these data for the development and optimiza-
ion of diagnostic and prognostic phenological models. Recently,
ome phenological models aimed at describing canopy develop-
ent have been proposed (e.g. Arora and Boer, 2005; Jolly et al.,

005; Choler et al., 2010; Knorr et al., 2010) and few attempts to
ptimize these models against remotely sensed products have been

eported (Stockli et al., 2008; Knorr et al., 2010). Among these mod-
ls the Growing Season Index (GSI) developed by Jolly et al. (2005)
s one of the most increasingly used (e.g. Stockli et al., 2008). GSI
s a bioclimatic index that predicts foliar phenology of vegetation
t Meteorology 151 (2011) 1325– 1337

throughout the year as a consequence of three drivers: minimum
temperature, evaporative demand and daylength.

Furthermore, the direct linkage between observations of canopy
greenness through color indices (i.e. the algebraic combinations of
RGB brightness levels) obtained from digital camera imagery, CO2
flux measurements and vegetation indices related to canopy struc-
ture (e.g. Normalized Difference Vegetation Index, NDVI (Rouse
et al., 1974); MERIS Terrestrial Chlorophyll Index, MTCI (Dash and
Curran, 2004)) and functioning (e.g. Photochemical Reflectance
Index, PRI (Gamon et al., 1992)) might be useful for several rea-
sons: firstly, in investigating the impact of phenology on carbon
sequestration (Piao et al., 2008; Richardson et al., 2010); secondly,
in improving the description of carbon fluxes at site level through
the use of radiation use efficiency (RUE) models (e.g. Monteith
and Unsworth, 1990). RUE models assume that carbon fixation is a
linear function of the incident photosynthetically-active radiation
absorbed by vegetation (APAR) and RUE, which represents the con-
version efficiency of absorbed energy to fixed carbon. The APAR can
be described by using vegetation indices related to canopy struc-
ture while RUE is estimated from daily meteorology (e.g. Heinsch
et al., 2006; Veroustraete et al., 2002) or by using spectral VIs related
to photosynthetic efficiency or photochemistry (e.g. Gamon et al.,
1992, 1997).

In this paper, we  analyze a time series of color indices obtained
from digital camera imagery collected over a subalpine grassland
during 2009 and 2010 with the primary goal of addressing the fol-
lowing research questions: (i) can we use digital camera imagery
to monitor the seasonal canopy development of a subalpine grass-
land? (ii) Can we use digital camera imagery as additional source
of information for improving phenological and RUE models?

In order to address these questions we  firstly compare color
indices against other field measurements (e.g. LAI, green and total
biomass), spectral vegetation indices (e.g. NDVI, MTCI, etc.) col-
lected using high resolution spectrometers and against carbon flux
measurements collected with the eddy covariance technique. Sec-
ondly, we  use two  years of color indices and meteorology to attest
several versions of the GSI model regarding their application over
subalpine grasslands. Finally, we  combine color indices, meteorol-
ogy (through the use of RUE models) and spectral vegetation indices
(VIs) related to canopy structure, green vegetation biomass (NDVI,
MTCI) and to photochemistry (PRI) with the aim of describing the
temporal variability of GPP.

2. Material and methods

2.1. Site description

The study site is an abandoned pasture of the subalpine belt
composed mainly of matgrass (Nardus stricta,  Arnica montana,
Trifolium alpinum and Carex sempervirens as dominant species),
located at 2160 m a.s.l. (45◦50′40′′ N, 7◦34′41′′ E), in the North-
Western Italian Alps (Aosta Valley – Torgnon).

The area is classified as an intra-alpine region with semi-
continental climate with an annual mean temperature of 3.1 ◦C and
mean annual precipitation of about 920 mm.  The snow-free period
lasts generally from late May  to early November. The 2009 growing
season was  considerable less rainy than that of 2010 with a total
amount of precipitation during the snow-free period of 172 mm
and 362 mm respectively.

2.2. Digital camera set-up and image analysis
Canopy images were collected with a Campbell digital camera
(model CC640 Campbell Scientific, Logan, UT, USA) installed in a
weatherproof enclosure at a height of 2.5 m above the ground. The
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of the ROI was selected to provide a reasonably extended spatial
sampling of foreground canopy while avoiding the inclusion of the
area in the background that might be exposed to different light
conditions (e.g. scattered low clouds and fog in the background).
Fig. 1. Example of digital JPEG images collected by the CC

amera was pointed north, and set at an angle of about 20◦ below
orizontal following Richardson et al. (2007).  Camera focal length
as 3.5 mm and the field of view was approximately 79.8◦. Because

he camera position was  fixed, the scene was identical from day to
ay.

The camera was connected to a CR1000 Campbell data-logger
nd provided JPEG images of the same scene (resolution 640 × 480,
.3 megapixels, with three color channels of 8-bit RGB color infor-
ation, i.e. digital numbers ranging from 0 to 255) every hour from

0 am to 4 pm. The camera–JPEG compression mode was  set to
None”, to produce the best quality JPEG files with no artifacts from
lossy” compression algorithms.

The camera operated with automatic exposure and aperture
ode, responding to ambient light levels using the entire image

o adjust the exposure settings. Thus, the brightness of any individ-
al pixel was not a direct measure of surface radiance per se. The
amera did not record the exposure setting along with the image,
hus preventing the conversion of the images into digital numbers
DN) proportional to radiance.

The present study was based on the analysis of 1940 images
ecorded between the 21st May  2009 (DOY 141) and the 20th
ovember 2010 (DOY 324). Sample images from throughout the
ear 2009 are presented in Fig. 1. To minimize the angular effect of
he canopy’s hemispherical directional reflectance function (Chen

t al., 2000) only the images taken from 11 am to 1 pm were used.

We  developed an R script (R version 2.11.1, R Development Core
eam, 2009) to process and analyze the archived digital image files.
nalyses were based on time series extracted from one specific
ampbell digital camera during the 2009 growing season.

“Region of Interest” (ROI) as illustrated in Fig. 2. The dimension
Fig. 2. Digital image collected by the CC640 Campbell camera the 16th July 2009.
Blue  box denotes the static Region of Interest (ROI) selected for the study. The grey
reference panel is visible on the bottom right portion of the image.
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The color indices were computed on each archived image:
he red, blue and green digital numbers (DN) of each pixel were
xtracted and averaged over the ROI for each image. Then, the per-
ent of relative brightness (RGB chromatic coordinates in Gillespie
t al., 1987) of each channel were computed as in Eqs. (2)–(4) (RI,
I and BI):

otalDN = RDN + GDN + BDN (1)

I = RDN

TotalDN
(2)

I = GDN

TotalDN
(3)

I = BDN

TotalDN
(4)

here RDN, GDN, BDN are the red, green and blue DN values of
ach color channel respectively. As mentioned above, the Campbell
C640 automatically optimizes the exposure time without record-

ng it. Therefore it is not possible to compute the number of digital
ounts in the unit time, the physical quantity needed to correctly
ormalize the images for the incident irradiance. The use of RGB
hromatic coordinates (Eqs. (2)–(4))  instead of RGB brightness lev-
ls suppresses the influence of changes in scene illumination due
o cloud cover, solar illumination, as well as image exposure and
nternal camera processing.

An additional color index, the greenness excess index (GEI,
ichardson et al., 2009; Woebbecke et al., 1995), was also computed
Eq. (5)):

EI = 2 · GDN − (RDN − BDN) (5)

Color indices were computed for the selected ROI for each image.
hen, the color indices computed for the three images recorded
etween 11 am and 1 pm on each day were averaged to get a mean
aily value of each color indices.

To assess the overall quality of the retrieved signal and the day-
o-day stability of the imagery color balance, one ROI from the grey
anel (Fig. 2) was extracted. The coefficient of variation of the RGB
hromatic coordinates (Eqs. (2)–(4))  during the two growing season
as 3.9%, 1.8% and 3.3% for RI, GI and BI respectively, giving us

onfidence to the quality of the retrieved signal.
Image quality was sometimes adversely affected by rain, snow,

erosols, fog and uneven illumination due to the presence of scat-
ered clouds. The result is that smooth trajectories of the color
ndices related to canopy greenness were sometimes interrupted
y a sharp increase or decrease in VI values, lasting for one or a
ew days. The time series of daily average color indices were thus
ltered to suppress unusual high or low values with a recursive
utlier removal filtering. A cubic smoothing spline, with variable
egrees of freedom (df)  set to the ratio between time series length
nd 10 (i.e. for time series of 300 days, df was set equal to 30), was
tted to GI and GEI data. Then, the residuals between daily color

ndices and the smoothing spline were calculated. A particular day
as considered as ‘good’ and then retained for further analysis if

he absolute value of the daily residual was less than � + 3�, where
 is the mean of the residuals and � is their standard deviation.
he algorithm described above was recursively applied to the color
ndices time series until no outliers were detected (with a maxi-

um of 10 loops). We  selected a smoothing spline because it was
reviously found to be useful to extract phenological patterns from
emotely sensed observations (Bradley et al., 2007).

.3. Eddy covariance flux measurements and

icrometeorological data

CO2, water and energy fluxes between vegetation and atmo-
phere were measured using the eddy covariance (EC) technique
t Meteorology 151 (2011) 1325– 1337

(e.g. Baldocchi et al., 1996). Wind velocity components were
measured using a three-dimensional sonic anemometer (CSAT-3
Campbell Scientific Inc., Logan, UT, USA) positioned at a height of
2.5 m above the surface. Water vapor and CO2 fluctuations were
measured with a fast-responding open-path infrared gas analyzer
(IRGA, LI-7500, LI-COR Inc., Lincoln NE, USA). Eddy fluxes were
calculated with a time step of 30 min  according to EUROFLUX
methodology (Aubinet et al., 2000).

Along with EC fluxes, the main meteorological variables were
measured every 30 min, among these photosynthetically active
radiation (PAR), air temperature (TAir) and relative humidity (RH)
were measured above the grassland by means of a quantum sensor
(LI-190s, LI-COR Inc.) and a shielded thermo-hygrometer (HMP45C,
Vaisala Inc., Woburn, MA,  USA) respectively. The vapor pressure
deficit (VPD) was  computed from TAir and RH. Precipitation was
measured using a tipping bucket rain gauge (CS700, Campbell Sci-
entific, Logan, UT, USA); soil water content (SWC) was measured
with water content reflectometers (CS-616, Campbell Scientific,
Logan, UT, USA), installed at two different depths (5–30 cm)  while
snow height was measured with an ultrasonic distance sensor
(SR50, Campbell Scientific, Logan, UT, USA). Day length was  com-
puted using potential incoming solar radiation modeled by the r.sun
routine (Hofierka and Suri, 2002) implemented in GRASS Open
Source GIS (GRASS Development Team, 2008) with a 2-min time
step. Day length was  computed as the sum of the time steps with
potential radiation values higher than 20 W m−2.

In order to discard doubtful half-hourly data, in which the the-
oretical requirements of the eddy covariance technique are not
fulfilled, we performed the tests for stationarity and integral tur-
bulent characteristics following Foken and Wichura (1996). Results
from integral turbulence and stationarity tests were combined to
get the overall quality flag for each half-hour period using the stan-
dard procedure followed in Carboeurope-IP project (Mauder and
Foken, 2004). Data belonging to class 2 (questionable data quality,
gap filling necessary) were discarded.

In order to avoid the possible underestimation of fluxes in stable
conditions, data with friction velocity (u*) lower than an appropri-
ate threshold were filtered. A critical u* threshold of 0.050 m s−1

was estimated using a procedure similar to Papale et al. (2006).
Quality control tests rejected 10.37% of the measured data while

data below the critical u* threshold were about 11.37%. In the fol-
lowing analyses, we  only used the flux data which passed the above
described tests.

To assess the consistency of the EC measurements, we  analyzed
the energy balance closure (Aubinet et al., 2001) by computing the
slope of the linear relationship between half-hourly sums of latent
heat, sensible heat and their storage, measured with the EC system,
and the sums of half-hourly net radiation and soil heat flux obtained
with independent methods. The heat storages of biomass and soil
were not considered in this analysis. The energy balance closure for
the snow-free period in the 2 measurement years was 0.69.

For the gap-filling and partitioning of fluxes, the marginal
distribution sampling (MDS) method and the partitioning method
described in Reichstein et al. (2005), implemented in the online
tool (http://www.bgc-jena.mpg.de/bgc-mdi/html/eddyproc/),
were used.

2.4. Estimation of flux footprint

The footprint of eddy covariance flux measurements was deter-
mined through the analytical model of Schuepp et al. (1990) which
measures the cumulative normalized contribution to the surface

flux from an upwind source area

The target ecosystem is represented in the area in Fig. 3. Con-
sidering all the data belonging to the quality class 0 and 1 (Mauder
and Foken, 2004) above the critical u* threshold, the median of the

http://www.bgc-jena.mpg.de/bgc-mdi/html/eddyproc/
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Fig. 3. (a) Site map  with the polar plot of the distribution of the peak flux footprint (XMAX) computed by 11.25◦ sectors for the growing seasons 2009 and 2010. The isolines
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nd  different colors represent the percentiles of the distribution of XMAX in a particu
y  11.5◦ wind sectors for the growing seasons 2009 and 2010. The colors in each s
gure  legend, the reader is referred to the web  version of the article.)

alues of the peak flux footprint (XMAX) was 17.8 m (Fig. 3a). During
aytime the median of XMAX was lower (14.23 m). These values are

n agreement with other analysis conducted with a similar exper-
mental set-up over alpine grasslands (e.g. Marcolla and Cescatti,
005).

Considering the daytime fluxes about the 90% of the fluxes was
mitted by an area within 40 m around the eddy covariance system.
he distribution of the XMAX position (Fig. 3) confirmed that the
easured scalar flux was representative of the area we are focusing

n and that the contribution of fluxes from the target ecosystem is
y far dominating the overall budget.

.5. Ancillary and radiometric measurements

During 2009 and 2010 growing seasons additional data on veg-
tation structure and phenology were periodically collected. Leaf
rea Index (LAI), green and total (green and dry) aboveground
iomass were measured every two weeks by sampling the phy-
omass at 12 selected plots of 40 cm × 40 cm in the study area.
t each sampling date LAI was estimated at each plot by using a
canning device and the average value was computed. The maxi-
um  LAI was reached in July (2.7 m2 m−2 in 2009 and 2.8 m2 m−2 in

010). In the same 12 plots, visual observations of canopy greenness
greenness visual estimation, GVE) were collected and averaged for
he estimation of canopy GVE.

Canopy spectral properties were measured with an automatic
yperspectral system named HSI (HyperSpectral Irradiometer)
perating in the spectral range 400–1000 nm with a spectral res-
lution of 1 nm (Meroni et al., 2011; Meroni and Colombo, 2009).

SI was installed at the site and operated continuously for almost

he entire growing seasons (130 days in 2009 and 148 days in
010), collecting spectral signatures of the canopy about every

 min. Spectral data were used to compute vegetation indices (VIs)
ctor. (b) Wind rose: wind frequencies are expressed in percentages and computed
indicate the wind speed class. (For interpretation of the references to color in this

related to canopy structure such as the Normalized Difference Veg-
etation Index (NDVI, Rouse et al., 1974, Eq. (6)) and the MTCI (Meris
Terrestrial Chlorophyll Index, Dash and Curran, 2004, Eq. (7)). The
Photochemical Reflectance index (PRI, Gamon et al., 1992), related
to canopy functioning, was  also computed. PRI was  scaled (sPRI)
according to Rahman et al. (2001) in a range of 0–1 for use as an
efficiency factor (Eq. (8)):

NDVI = �800 − �600

�800 + �680
(6)

MTCI = �753.75 − �708.75

�708.75 − �681.25
(7)

sPRI =
(

(�531 − �570)/(�531 + �570) + 1
)

2
(8)

where �x is the reflectance computed at the x wavelength in nm.
For consistency with color indices, midday VIs (average of all

data collected from 11 am to 1 pm)  were computed and used for
further analyses.

2.6. Using color indices for model development

We assessed the potential for using color indices to develop and
parameterize phenological and RUE models.

2.6.1. Growing Season Index (GSI) model
Canopy development was  modeled using the GSI (Growing Sea-

son Index, Jolly et al., 2005). In its original formulation, GSI assumed
that canopy development was  driven by three climatic controls:

minimum daily temperature TMIN (◦C), day length or photoperiod
Ph (h) and mean day-light VPD (h Pa). The daily value of GSI was
computed as the 21-day running average of the index iGSI. iGSI
was calculated daily as the product of three factors (f(TMIN), f(Ph)



1330 M. Migliavacca et al. / Agricultural and Fores

Table  1
Summary of different Growing Season Index (GSI) formulations tested (described
in  Section 2.6.1 in the text). Grey areas represent the environmental factors used by
the different model formulations for the calculation of the daily GSI value: f(TMIN)
represents the constrain of minimum temperature, f(Ph) represents the day-length
constraint, f(VPD) represents the constraint of vapor pressure deficit (VPD), f(SNOW)
represents the constraint due by the presence of snow cover while f(SWC) represents
the  constraint of the soil water content.

GSI formulation f(TMIN) f(Ph) f(VPD) f(SNOW) f(SWC)

GSI
GSIPh+SNOW
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GSISWC+SNOW+Ph

nd f(VPD)) that vary linearly between 0 and 1 as a consequence
f the constraining limits. The constraining limits were described
y the empirical climate parameters Tmmax, Tmmin, Phmax, Phmin,
PDmax, and VPDmin representing maximum and minimum TMIN,
h and VPD ranges above/below which canopy development is fully
onstrained or unconstrained.

Given the importance of snow cover and SWC  in determining
he canopy development of subalpine grasslands, we  included two
dditional factors in the model:

f(SNOW): a flag that assumes a value of 0 when the canopy is
covered by snow and 1 during the snow-free period;
f(SWC): this scalar function was specified as sigmoidal functions
(Eq. (9))  constrained to the interval [0,1].

f (SWC) = 1
1 + e(�1−�2·SWC) (9)

Five different model formulations based on different combina-
ions of the limiting factors were then tested (Table 1): GSI as in Jolly
t al. (2005) (‘GSI’), GSI with f(SNOW) included for the calculation of
GSI (‘GSIPh+SNOW’), GSI with f(SNOW) included for the calculation of
GSI in place of f(Ph) (‘GSISNOW’), the ‘GSISNOW’ with f(SWC) in place
f f(VPD) (i.e. ‘GSISWC’) and finally the ‘GSIPh+SNOW’ with f(SWC) in
lace of f(VPD) (i.e. ‘GSISWC+SNOW+Ph’).

For each model formulation, model parameters (i.e. Tmmax, Tmmin,
hmax, Phmin, VPDmax, VPDmin, �1 and �2) were estimated against
he daily GI derived from digital camera imagery for the entire
bservation period (i.e. growing seasons 2009 and 2010). The main
im of this analysis was to test which model formulation was  best
upported by data at the hand.

To create a continuous time series of GI for the optimization
f the GSI we fitted cubic smoothing splines with degrees of free-
om (df) set to the ratio between time series length and 10 (i.e. for
ime series of 300 days, df was set equal to 30). The spline was  pre-
erred to well-known growth models (e.g. logistic model) first of all
ecause of the strongly asymmetric (fast spring growth and slow
utumn decrease) shape of the retrieved color index (i.e. GI) and
econd because it was more flexible than a prescribed function.

.6.2. Radiation use efficiency (RUE) models
For modeling canopy functioning we tested two  different RUE

pproaches.
The first was based on the widely used RUE model MOD  17

Heinsch et al., 2006), which is the algorithm of the MODIS daily
hotosynthesis product (MOD17). MOD17 is driven by meteorol-
gy (air temperature and VPD), PAR and the fraction of absorbed

AR (fAPAR). Here, MOD17 was driven by the GI as a proxy of fAPAR,
o that daily GPP (GPPi) was modeled as in Eq. (10):

PPi = RUEMAX · (a0 + a1GI)  · PAR · f (VDP)f (TMIN) (10)
t Meteorology 151 (2011) 1325– 1337

where RUEMAX is the maximum radiation use efficiency (gC MJ−1);
f(TMIN) and f(VPD) varied linearly between 0 and 1 as a consequence
of suboptimal temperatures and water availability for photosyn-
thesis, PAR is the incident PAR expressed in MJ  m−2, a1 and a0 are
the coefficients relating GI and fAPAR.  RUEMAX, a1, a0 and the param-
eters of f(TMIN) and f(VPD) were estimated against observed daily
GPP.

The second approach was based on Rossini et al. (2010) which
showed that the midday GPP can be effectively estimated using only
PAR and a combination of structural (e.g. NDVI, MTCI) and function-
related (e.g. sPRI) VIs computed using high resolution spectral data.
Here we  extended this approach by including the color index (GI)
as a descriptor of canopy greenness. We  thus investigated whether
color indices and spectral VIs could be combined to predict mid-
day GPP, without relying on meteorological data for determining
photosynthetic uptake. We  tested two  different sets of models for
the description of midday GPP (Rossini et al., 2010). The first model
set (PV, Eq. (11)) assumed that GPP can be estimated with constant
RUE and deriving APAR as the product of PARi and a linear function
of VIs related to the biomass and photosynthetic pigments (i.e. GI,
NDVI, MTCI). The second set of models (E, Eq. (12)) assumed that
GPP can be estimated by deriving both the absorbed PAR (APAR)
and RUE directly from spectral indices. Hence, model set E com-
bined indices related to photosynthetic components of fAPAR (i.e.
GI, NDVI, MTCI) with indices related to RUE (sPRI).

GPPi = (a0 + a1PVi) · PARi Model set PV (11)

GPPi = (a0 + a1sPRIi) · (a2 + a3PVi) · PARi Model set E (12)

where GPPi, PARi, PVi and sPRIi are the midday GPP, PAR, VI related
to photosynthetic fAPAR (i.e. NDVI, MTCI and GI) and sPRI of the
i-th DOY, respectively. Model parameters were derived by fitting
the model against midday observed GPP.

2.7. Model parameter estimates and evaluation of model
performances

Best-fit model parameters were estimated using either simu-
lated annealing (for GSI and MOD17) or the quasi-Newton method
(for parameters in Eqs. (11) and (12)), implemented in the R “optim”
routine belonging to the R stats package (R, version 2.11.1). For
both methods the residual sum of squares between observed and
modeled data (RSS) was used as cost function of the optimization.

The main fitting statistics (r2, the root mean square error, RMSE,
and the modeling efficiency, EF) between observed and modeled
data were computed to evaluate the overall accuracy of fitted mod-
els (Janssen and Heuberger, 1995).

To identify the best model supported by data among different
GSI formulations and RUE models we  computed the Akaike Infor-
mation Criterion (AIC, Akaike, 1973). The AIC is a useful indicator
since it considers the trade-off between model complexity (i.e.
number of parameters, p) and maximum likelihood (here calcu-
lated as RSS). The lower the AIC, the better is the model considered.
AIC essentially balances better model explanatory power against
increasing complexity.

3. Results

3.1. Analysis of color indices, CO2 fluxes, meteorological fluxes
and ancillary data

Time series of midday chromatic coordinates (RI, GI and BI)

across the ROI computed for the year 2009 show distinct seasonal
signals (Fig. 4a). Both RI and BI were more variable from day-to-day
than GI. The time series of GI and GEI computed for the growing
season 2009 are reported as example in Fig. 4b and c.
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Fig. 4. (a) Time series of relative brightness (% Brightness) of each channel (Eqs. (2)–(4) in the manuscript) for the year 2009: green dots represent greenness indices GI,
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The correlation between ancillary data collected in 2009 and
010 and color indices is reported in Table 2. Results show a positive
orrelation with green biomass, LAI and GVE, while a not signifi-
ant correlation was observed with total biomass (dry plus green
iomass) indicating that the color indices are not sensitive to dry
iomass.

A summary of meteorological data, daily GPP and the smoothed
ime series of GI, GEI, MTCI, NDVI and sPRI for the entire measure-
ent period are reported in Fig. 5. GI was slightly better correlated
ith the ancillary data than GEI, although the differences were

able 2
earson’s correlation coefficient calculated between ancillary data and color indices
omputed for the days in which the ancillary data were collected. GI is the Greenness
ndex, GEI is the Greenness Excess Index, LAI is the Leaf Area Index, GVE is the Green
isual Estimation.

Total biomass Green biomass LAI GVE

GI n.s. 0.68* 0.77** 0.72***

GEI n.s. 0.67* 0.74*** 0.70***

* Represent significant correlations (p < 0.01).
** Represent significant correlations (p < 0.001).

*** Represent significant correlation (p = 0), n.s. represents not significant correla-
ion.
Eq. (2) in the manuscript). (c) Time series of Greenness Excess Index (Eq. (3) in the
y of snowmelt in spring and snowfall in autumn. Vertical dashed line represent a

d, the reader is referred to the web version of the article.)

almost negligible. For this reason we  further discuss the results
only in terms of GI.

GI (Fig. 5d) began rising slowly immediately after the snowmelt
(around DOY 150 and 140 for 2009 and 2010, respectively) and
at faster rate after DOY 165–170, reaching its maximum at early
July (around DOY 190–200 for both years). Over the subsequent
weeks, GI showed a steady decline due to autumn yellowing and
senescence. In 2009, by DOY 270, however, a pronounced increase
in GI was  observed (Fig. 5d). Spectral VIs (i.e. NDVI, MTCI) and color
indices were in accordance during late spring and early summer
(DOY 150–200 in Fig. 5d); although in 2010 both NDVI and MTCI
were higher than color indices. In late summer and autumn 2009
and 2010 (around DOY 200–280), MTCI and color indices were again
in agreement, although GI was  more sensitive to the second green-
up in 2009 and also noisier than MTCI. In autumn 2009, sPRI showed
an increase that highlighted an increase of photosynthetic activity.
NDVI decreased more slowly than color indices and than other VIs.

In springtime we observed measurable photosynthetic CO2
uptake at DOY 150, immediately after snowmelt (Fig. 5c). In both
years springtime increases in GPP started synchronous with GI

(Fig. 5e), but afterwards GPP tended to lead changes in canopy
greenness (GI). During late summer/autumn, canopy development
and functioning showed similar responses to meteorological con-
ditions before DOY 250. The increase in GI occurred in autumn 2009
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Fig. 5. (a) Time series of observed mean daily air temperature (TAir). (b) Time series of precipitation and soil water content (SWC) at 10 cm. (c) Time series of daily cumulated
gross  primary production (GPP). (d) Time series of smoothed Greenness Index (GI) – solid line – Greenness Excess Index (GEI) – dashed line – derived from digital camera
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model selected by AIC was the GSISWC+SNOW+Ph. The GSISWC+SNOW
magery. Normalized Difference Vegetation Index (NDVI) – crosses – MERIS Terre
eflectance Index (sPRI) – grey line – computed from spectral signatures collected c
reenness Index (GI) – solid line – and Gross Primary Production (GPP) – crosses (e

eflected a weaker but detectable increase in GPP (Fig. 5e) in corre-
pondence to a rain pulse (DOY 260–270) and a subsequent increase
n SWC  (Fig. 5b). Finally, after DOY 306 the snow covered the canopy
n both years.

Correlations between spectral VIs (computed from HSI spec-
ra), GPP and color indices are reported in the correlation matrix

n Table 3. MTCI and color indices are strongly correlated (r = 0.82

ith GI) while NDVI is less correlated (r = 0.69 with GI).

able 3
orrelation matrix between color indices derived from digital camera imagery, veg-
tation indices computed from spectral signatures collected with the Hyperspectral
rradiometer (HSI) and midday Gross Primary Production (GPP). All correlations are
ignificant (p < 0.01). GI is the Greenness Index; GEI is the Greenness Excess Index;
DVI is the Normalized Difference Vegetation Index; MTCI is the MERIS Terrestrial
hlorophyll Index.

NDVI MTCI GI GEI GPP

NDVI 1 0.87 0.69 0.67 0.83
MTCI 1 0.82 0.80 0.95
GI 1 0.99 0.79
GEI 1 0.78
GPP 1
 Chlorophyll Index (MTCI) – dotted and dashed line – and scaled Photochemical
ously in the field by the Hyperspectral Irradiometer (HSI). Time series of smoothed

 left panel represents 2009 while the right panel is the 2010 growing season.

3.2. The GSI model

The statistics for the different formulations of the GSI model fit-
ted against the time series of daily GI are reported in Table 4. Despite
higher complexity (i.e. a larger number of parameters), the best
showed a performance comparable to the best model, while the

Table 4
Fitting statistics of the different formulations of Growing Season Index (GSI) model
(Table1). MEF  is the modeling efficiency, RMSE is the root mean square error, r2 is
the determination coefficient, dAIC is the difference between the Akaike Informa-
tion Criterion (AIC) computed for the model and the minimum AIC across models
(i.e.  dAIC of 0 represents the best model formulation). p is the number of model
parameters. ‘GSISWC+SNOW+Ph’ (please see description in Section 2.6.1) is the best
model according to the AIC criterion, the parameters estimated are: Tmmin = −5.66 ◦C,
Tmmax = 7.24 ◦C, Phmin = 6.8 h, Phmax = 14.71 h, �1 = 8.92 and �2 = 0.69.

Model r2 MEF RMSE  dAIC P

GSI 0.6 0.55 0.20 315.28 6
GSISNOW 0.59 0.59 0.18 200.85 6
GSIPh+SNOW 0.82 0.80 0.13 42.95 8
GSISWC+SNOW 0.80 0.79 0.14 52.85 6
GSISWC+SNOW+Ph 0.86 0.84 0.12 0 8
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Fig. 6. The seasonal index values for minimum temperature f(TMIN), soil water content f(SWC), snow f(SNOW) and day length (photoperiod, f(Ph)) showing the seasonal limits
of  each variable. Indices are presented as a 21-day running average to better depict seasonal trends. The white area represents the Growing Season Index (GSI) while crosses
represent the Greenness Index (GI) derived from digital camera imagery. The green areas represent the relative importance of temperature as limiting factor, the grey areas
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climatic drivers.
As was found by other authors, we observed a strong control of

snowfall and snowmelt on phenology (Jonas et al., 2008; Ellebjerg

Table 5
Summary of statistics in fitting (determination coefficient, r2, root mean square
error, RMSE, and Akaike Information Criterion, AIC) of different models tested in
this  study.GI is the Greenness Index; NDVI is the Normalized Difference Vegetation
Index; MTCI is the MERIS Terrestrial Chlorophyll Index (MTCI); sPRI is the scaled
Photochemical Reflected Index; RUEMAX is the maximum Radiation Use Efficiency.
Model set PV assumed that GPP can be estimated with constant RUE  and deriv-
ing absorbed photosynthetically active radiation (APAR) as the product of incident
PAR  and a linear function of vegetation indices related to the biomass and photo-
synthetic pigments (i.e. GI, NDVI, MTCI). The model set E assumed that GPP can be
estimated by deriving both the APAR and RUE directly from remotely sensed data.
The best-performing models of PV and E set are in bold print. MOD17 represents the
algorithm of the MODIS photosynthesis product (MOD17).

Model
set

Driver r2 RMSE
(gCm−2 d−1)

AIC

fAPAR RUE

PV GI 0.54 3.01 592.2
NDVI 0.47 3.22 628.1
MTCI 0.58 2.85 563.2

E  GI sPRI 0.57 2.90 576.4
epresent the limitation due to presence of snow, the orange areas the limitation d
onditions. The left panel represents 2009 while the right panel is the 2010 growin
eferred to the web  version of the article.)

riginal formulation and the GSISNOW showed a poorer perfor-
ance. The time series of GSISWC+SNOW+Ph is reported in Fig. 6.
Individual daily color index values of the relative influence for

MIN, SWC, day length and snow for 2009 and 2010 are shown in
ig. 6. During spring, snow (grey area) and temperatures (green
rea) were the primary limiting factors while day length was more
mportant in 2010 when the snow-melt occurred before (around
OY 140). Autumn phenology was driven by soil water availability,

emperature and photoperiod in 2009 while in 2010 water avail-
bility was not a limiting factor.

.3. Performance of RUE models

Results of the statistical analysis of the performance of the differ-
nt RUE models showed that color indices (i.e. GI), when combined
ith meteorology or remotely sensed estimation of RUE can be

uccessfully used for the description of the GPP (Table 5).
The MOD17 model results showed that by using meteorology

nd color indices it was possible to describe the temporal vari-
bility of daily GPP quite well (RMSE = 0.87 gC m−2 d−1; r2 = 0.87;
F = 0.85).

Overall, results of model set E (i.e., RUE described by sPRI) were
etter than those obtained with model set PV (i.e., RUE is con-
tant and GPP is dependent only on VIs related to the presence of
hotosynthetic material). Results show an improvement in model
erformances on adding the sPRI, and thus a term related to photo-
ynthetic efficiency, to models driven only by VIs related to canopy
tructure. According to AIC, the model that used MTCI and sPRI was
he best descriptor of daily GPP among the models based on the
pectral VIs.

. Discussion

.1. Seasonal variations of canopy phenology

This study shows that digital camera imagery are well-suited
or monitoring the development and phenology of a subalpine
rassland. Color indices derived from these images provide reli-

ble information on canopy status with daily temporal resolution
nd offer the possibility of continuous and unattended monitor-
ng of timing and rate of canopy development. These achievements
re not feasible with traditional phenological observations in such
 day length while the red area the limitation due to suboptimal soil water content
on. (For interpretation of the references to color in this figure legend, the reader is

ecosystems, often located in remote areas. This is particularly inter-
esting considering also the current rapid development of webcams
and digital cameras, the development of new promising method-
ologies for monitoring phenology (e.g. Ryu et al., 2010) as well as
the development and refining of image processing techniques (e.g.
Sonnentag et al., 2011).

Moreover, with digital camera imagery we obtained an inte-
grated indicator of canopy development, which is difficult to obtain
with traditional phenological campaigns because of the high biodi-
versity of subalpine grasslands and because the definition of a field
protocol for plant phenology is not inconsequential.

The ecosystem studied is an interesting test-case for pheno-
logical and productivity models because of the fast dynamics of
greening, carbon fluxes and physiological activity in response to
NDVI sPRI 0.59 2.82 561.5
MTCI sPRI 0.60 2.80 557.8

MOD17 GI Meteorology,
RUEMAX

0.88 0.87 −73.40
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t al., 2008): once snow disappeared the canopy suddenly started
o sequester carbon and to green-up. The lag observed between
hese two processes (GPP led GI) was related to the pattern of
anopy green-up: matgrass, which is the dominant graminaceous
pecies at the site, starts to green-up from the bottom, below the dry
nd brown dead biomass of the previous year, thus not completely
erceptible by the camera low view angle. Color indices track the

ncrease in canopy greenness only when green starts to be more
isible from above. The result of this mechanism was a delay of a
ew days (6–7 days) between GPP and GI which may  have an impor-
ant influence on the extraction of phenological metrics from the
olor indices signal.

In 2009, during late summer–autumn, when senescence mech-
nisms were already active and the canopy was yellowing, two
limatic events were observed: a warm week associated with low
recipitation first (DOY 225–235) and a rain pulse associated with
armer temperature in late September (Fig. 5a and b from DOY

70). These peculiar conditions allow us to highlight the poten-
ial usefulness of digital repeat photography in tracking weekly
ariations in canopy greenness (Fig. 5d). In fact, the analysis of
ime courses of color indices showed a rebound of GI that followed
he rain pulse and the stimulation of photosynthetic activity high-
ighted by the concomitant increase in GPP and a more pronounced
ncrease in sPRI.

Conversely to spring, in autumn we observed a more rapid
ecrease in color indices than in GPP. During senescence we
bserved an increase in dry (and yellow) matter on the top canopy
ayer which led to a reduction in color indices. However, during
his phase there was photosynthetically active vegetation material
i.e. green biomass mainly localized on the bottom of the canopy)
hich maintained photosynthetic activity as detected by GPP and

PRI.
The effect of the rain pulse in autumn 2009 was  to cause a pro-

ounced greening of the canopy detected by the color indices and
y MTCI but not by NDVI. In both years autumn MTCI reacts faster
han NDVI to variations in chlorophyll content and green biomass
ue to the fact that the MTCI index is based on wavelengths in the
ed-edge region which is more sensitive to chlorophyll and green
ariations (Dash and Curran, 2004). NDVI instead is by far more
elated to structure, LAI and total biomass. Therefore, NDVI val-
es during autumn were less dynamic and decreased more slowly
han MTCI and color indices. NDVI was less able to follow the rapid
esponse of green vegetation and, contrary to MTCI and GI in 2009,
id not show any sign of rebound after the rain pulse. The sPRI

nstead showed a clear rebound in autumn in 2009, thus indicating
n increase in RUE as a consequence of the improved meteorolog-
cal conditions. In fact, sPRI is able to track the interconversion of
he xanthophyll cycle pigments in intact leaves (Gamon et al., 1992)
nd it is increasingly used to assess photosynthetic rates and RUE
oth at leaf (Gamon et al., 2006; Meroni et al., 2008) and canopy
cale (Garbulsky et al., 2008; Hilker et al., 2007, 2010).

Jacobs et al. (2009) have shown how a distributed network of
igital cameras might be used for phenological monitoring and
valuation of satellite phenological products; our results expand
n this work by demonstrating strong correlations between color
ndices and both the radiometric properties and biological activity
f the surface vegetation.

.2. Using color indices for improving phenological and GPP
odeling

The GSI proposed by Jolly et al. (2005) was reformulated for

he application to alpine grasslands. The best model selected by
he AIC was the one including the occurrence of snow, SWC, day
ength and minimum temperature as ecological factors controlling
anopy development. The accuracy of the models including the VPD
t Meteorology 151 (2011) 1325– 1337

and SWC  as driver of water availability was  almost comparable (i.e.
GSIPh+SNOW and GSISWC+SNOW+Ph in Table 4). Although the use of
SWC is suggested, this result allowed the use of VPD as a surrogate
for water availability, as also suggested by Jolly et al. (2005) with the
main advantage that VPD is easily computable from temperature
for the spatial application of the model.

The main environmental cues controlling the grasslands phe-
nology were snow-melting and temperature during spring with a
secondary role of day length. Autumn phenology was the result
of the combined effect of cold temperatures and decreasing day
length (Fig. 6). However, in 2009, the drier year, water availabil-
ity played an important role in controlling summer and autumnal
canopy development (red area in Fig. 6).

For spring these results are in agreement with other field studies
which show that alpine grasslands are primarily limited by tem-
perature and the date of snowmelt (e.g. Larl and Wagner, 2006).
During spring we also observed a not negligible role of day length,
particularly relevant in 2010 when the snow disappeared earlier in
the season. This finding is supported by Keller and Korner (2003)
who suggested that several alpine species of grasses are sensi-
tive to photoperiod and may  not be able to fully utilize periods
of earlier snowmelt. This leads to a rearrangement of community
composition in response to warmer and earlier snow-melt (Keller
and Korner, 2003). On the basis of our results we then support
the hypothesis that any attempts at predicting or modeling future
subalpine grass phenology based on warming scenarios needs to
account for photoperiod constraints. However, we  suggest further
analyses to reinforce our results, bearing in mind that they are
based on two  years of data from a single site.

In terms of model development, we believe that the dates of
snow melting in spring and snowfall in autumn have to be included
as additional drivers of phenological models for grasslands. In fact,
the sole use of photoperiod, as in the original model formulation
and in many phenological models, leads to poor performance and
an unsatisfactory description of the phenological cycle. For spatial
applications the dates of snow presence and snow-melt might be
derived from satellite data through the use of the MODIS snow-
cover product (Hall et al., 2002).

The analysis conducted with RUE models highlighted that GPP
can be modeled by combining color indices with meteorologi-
cal data or spectral VIs related to photosynthetic efficiency. The
color indices were strongly related to GPP in spring when vari-
ations in photosynthetic rates were largely driven by phenology.
Later in the season, the inclusion of predictors of radiation use effi-
ciency was necessary for the description of carbon uptake. For these
reasons, although more complex, models including meteorology
or sPRI were selected according to the AIC criterion. Considering
the models of the class PV, a better description of the GPP was
observed using the MTCI and GI rather than the NDVI. This can
be explained by the close relation between MTCI and GI and green
biomass (Table 2), which controls the energy absorbed by photo-
synthetic pigments and thus effectively used for photosynthetic
processes.

We  demonstrate (Fig. 6 and Table 5) that color indices are
highly valuable for developing and testing RUE models aimed at
the description of GPP and phenological models for the descrip-
tion of the canopy development. These findings point towards a
more generic application of the methodology that exploits the
time series of color indices collected by the PhenoCam Network
(http://klima.sr.unh.edu/). The combination of color indices col-
lected by the network over different biomes and phenological
models might help to gain insights into the description of seasonal

canopy development. The main implication is the improvement
of the poor representation of phenology in process-based or land
surface models that might lead to erroneous estimation of carbon
fluxes (Kucharik et al., 2006; Migliavacca et al., 2009; Ryu et al.,

http://klima.sr.unh.edu/
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008) and biosphere-atmosphere interactions (Abramowitz et al.,
008).

.3. Uncertainty and limitations in using digital camera imagery

Building on previous work that has demonstrated that seasonal
ariation in the structure and function of plant canopies can be
uantified using digital camera imagery, we have highlighted the
otential use of these data for the development and parameteriza-
ion of phenological and RUE models

Nevertheless, some limitations and uncertainties still exist and
eed to be addressed in order to improve the reliability of the
ime series of vegetation status derived by RGB color indices (e.g.
onnentag et al., 2011; Bradley et al., 2010; Richardson et al., 2009;
de and Oguma, 2010; Ahrends et al., 2008).

These limitations are mainly related to the image quality issue
e.g. digital camera used and experimental set-up), as highlighted
y Sonnentag et al. (2011),  and to the post processing of color

ndices (e.g. filtering to minimize variation due to solar elevation
nd zenith angle, as well as atmospheric conditions). A comparison
f the phenological information extracted from different com-
ercial digital cameras installed over the same ecosystem could

rovide important information about the importance of camera
hoice (Sonnentag et al., 2010). Moreover, Ide and Oguma (2010)
bserved firstly a year-to-year drift in color balance and sec-
ndly that color balance differed between camera manufacturers.
s highlighted by Richardson et al. (2009) and Ide and Oguma

2010), noise in color indices values are due mainly to exposure and
eather conditions and can be diminished by setting cameras to
xed white balance rather than to auto white balance. The develop-
ent of calibration protocols and standards to ensure congruence

f long-term data sets from multiple sites is essential.
Another source of uncertainty is related to the post-processing

f color indices time series. Different methods for filtering color
ndices time series, removing questionable daily values due to unfa-
orable meteorological conditions, might introduce uncertainty for
raceability of the canopy seasonal variation and for the extrac-
ion of robust phenological metrics (e.g. green-up dates). Here we
pplied an approach based on a simple outlier removal that worked
ell at this site. However, in literature other methods ranging from

he visual inspection (Ahrends et al., 2008) to the use statistical
nalysis of pixel brightness or sky color (e.g. Ide and Oguma, 2010),
ave been proposed. Future efforts should be focused on the devel-
pment of robust and widely applicable filtering and gap-filling
ethods (e.g. Sonnentag et al., 2010).
Finally, Richardson et al. (2009) and Ide and Oguma (2010) sug-

ested the use of a grey reference panel placed in the corner of
he image for the normalization. Here, we mounted a vertical grey
anel and we  used the ROI extracted from the grey panel for assess-

ng the overall quality of the retrieved signal and the day-by-day
tability of the imagery color balance. However, for the use of the
ertical panel for normalization purposes, the different illumina-
ion and viewing geometries of canopy and reference panel should
e taken into account. This is particularly important over horizon-
al canopies such as grasslands. In these conditions the different
un-target-sensor and sun-panel-sensor geometries may  introduce
n additional source of uncertainty and the use of a normalization
anel with the same viewing geometry of the target would be pre-
erred. Sonnentag et al. (2011) proposed a promising approach to
econstruct hypothetical horizontal RGB reference that might help
o overcome such limitation. Future efforts should be addressed in
nderstanding the correct experimental set-up of the panel over

ifferent ecosystems and, in particular, over horizontal canopies.

These uncertainties need to be considered, and minimized, to
mprove long-term phenological monitoring with RGB camera
magery. We  showed that color indices can be used to constrain
t Meteorology 151 (2011) 1325– 1337 1335

models of canopy phenology and functioning. However, the use
of these indices for the analysis of interannual variability (e.g.
Sonnentag et al., 2011) and spatial variability (i.e. across site) of
canopy structure is still challenging and future efforts should be
focused to overcome the uncertainties and limitations discussed
above.

5. Summary

The present study shows that digital repeat photography pro-
vide reliable information on canopy greenness with a high temporal
resolution and can be considered as a useful and relatively low-cost
tool for monitoring canopy development of subalpine grasslands.

We  show that by combining color indices with a refined phe-
nological model able to describe canopy development (GSI) it
is possible to identify the main ecological factors controlling
subalpine grassland phenology. The main environmental cues
identified were snow-melt and temperature during spring while
autumn phenology was found to be driven by temperatures, day
length and water availability during the drier years. During spring
we also observed a significant role of day length particularly rele-
vant when snow-melt occurred earlier (i.e. 2010). This suggests that
any attempt at predicting or modeling future alpine plant phenol-
ogy based on warming scenarios needs to account for photoperiod
as additional constraints.

We  show that by combining information derived by color
indices and meteorological or remotely-sensed information related
to photosynthetic efficiency in radiation use efficiency (RUE)
scheme it is possible to describe well the temporal variability of
carbon uptake.

We conclude that digital camera imagery can provide impor-
tant information at site level to gain insights into the description
of the seasonal canopy development. Digital camera imagery can
be consider as a promising tool for testing different models and
different hypotheses on the main ecological factors controlling phe-
nology and canopy functioning. However, further work is necessary
to overcome limitations related to the image quality issue and pro-
cessing. In fact, while digital camera imagery are very useful for
monitoring the seasonal development of the canopy greenness, a
lot uncertainty still exists concerning the use of color indices for
monitoring the interannual variability of canopy structural param-
eters and future efforts should be focused to address this issue.
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