COMBINATORICS QUALIFYING EXAM January 2023

You have four hours to complete this exam.

When working on later parts of a problem, you may assume the results of earlier parts of the same problem without proof.

This exam has six questions, each with three parts (a,b,c).

PhD Pass: Three numbered questions solved completely, or two solved completely with substantial progress on another two.

MS Pass: Substantial progress on three questions.

Question 1

Let *G* be a simple graph with minimum degree $\delta = \delta(G)$.

- (a) Show that G contains a path of length δ .
- (b) Show that G contains cycles of at least $\delta 1$ different lengths. *Hint: consider a longest path.*
- (c) Show that G contains a cycle of length at least $\delta + 1$.

• • • • • • • • • •

Question 2

We consider proper vertex colorings of a simple graph *G*. This is a coloring of the vertices $c : V(G) \to \mathbb{N}$ such that $vw \in E(G)$ implies $c(v) \neq c(w)$. A greedy coloring of an *n*-vertex graph *G* is a coloring such that there exists a vertex ordering v_1, \ldots, v_n with the property that $c(v_1) = 1$ and for each $2 \le j \le n$, $c(v_j)$ is the smallest positive integer that is not the color of a neighbor of v_j in the set v_1, \ldots, v_{j-1} .

- (a) Show that the number of colors used in any greedy coloring does not exceed $\Delta(G) + 1$, where $\Delta(G)$ is the maximum degree of *G*.
- (b) Give an example of a graph and a greedy coloring where the number of colors used exceeds the chromatic number $\chi(G)$.
- (c) Show that for any simple graph there exists a greedy coloring that uses exactly $\chi(G)$ colors. *Hint: order the vertices by color in an optimal coloring.*

• • • • • • • • •

Question 3

(a) Outline how the "Snake Oil" method can be used to find a closed formula for a sum such as $\sum_{j\geq 0} g(j,n)$.

(b) Apply the method to find a generating function encoding $f(n) = \sum_{k\geq 0} \binom{k}{n-k}$.

(c) What familiar sequence is f(n) related to?

Question 4

(a) Define the plactic monoid. Make sure to explicitly state the elementary Knuth relations. Explain the relationship between the plactic monoid and tableaux.

.

- (b) Rectify the skew tableau (:: 12, :: 24, : 23, 24).
- (c) Sketch a proof of the fact that rectification is well defined.

• • • • • • • • • •

Question 5

- (a) Define the *f*-vector and *h*-vector of a simplicial complex.
- (b) Define a shellable simplicial complex and sketch a shelling of a simplicial polytope.
- (c) Apply the shellability from part (b) to prove that the *h*-vector of a simplicial polytope is palyndromic (the Dehn-Somerville equations).

• • • • • • • • • •

Question 6

- (a) Give the basis axioms of a matroid M. Define the matroid base polytope P_M associated to M in terms of vertices.
- (b) Use the strong (symmetric) basis exchange property to prove that P_M only has edge directions of the form $e_i e_j$ where e_i and e_j are standard basis vectors.
- (c) Give a collection of inequalities which describes the matroid base polytope (redundant inequalities are allowed).

• • • • • • • • •