Engr 116/13333 Virtual Instrument Engineering Syllabus Spring 2020

<u>Instructors</u>		
Mr. Victor Rossi	(656-8490)	James Kay, Phd (656-3331)
Victor.Rossi@uvm.edu		James.Kay@uvm.edu
Office at 379 Votey Building		Office at 373 Votey Building
<u>Lecture</u>		
Monday / Wednesda	y / Friday 10:50 ·	- 11:40
Room: 332 Votey		
<u>Required Text</u>		
Hands-On Introduct	ion to LabView fo	r Scientists and Engineers by John Essick
Oxford University Press		
Isbn 978-0-19-085306-8 paperback		
Isbn 978-0-19-085308-2 ebook		
Help Session Hours		
Email above addre	esses for appointm	nent
Grading (one credit version)	
quizzes		10%
lab assignments & h	omework	50%
midterm examination		40%
Grading (two credit version	1)	
quizzes		10%
lab assignments & homework		50%
midterm examination		20%
final examination		20%
Grading (three credit version	on)	
quizzes		05%
lab assignments & homework		50%
midterm examination		15%
final examination		15%
term project		15%

Notes on Grading

All assignments and quizzes are on a 10 point basis.

Midterm & Final Examinations are on a 100 point basis

Syllabus Units Overview

The LabView Programming Environment

Project Explorer

Virtual Instrument (hereafter referred to as VI)

VI Basics: Front Panel & Block Diagram Editing

Controls & Functions

VI Debugging & Error Handling,

Data Flow Programming

Simple Data Types

Cyclical Loops: While Loops, For Loops

Graphs & Charts

Waveform Parameters / Simulators / the Waveform data type

VI Timing & TimeStamps

Cyclical Loops with regard to Sine Waves / ch2 & ch3

Indexing, Clusters, Type Definitions ch4

Script Programming via MathScript & Formula Nodes ch4

Data Storage: Output of Character Strings into Data Files ch6

Arrays & Bundles

Array Functions, Data Feedback, Generating Plots ch6

Ch13

Advanced LabView Programming: Shift Registers ch7

Noise & Signal Averaging

Advanced LabView Programming: State Machines Ch8

Case Structures, Event-Driven Programming, Modularity, Connector Panes

Property Nodes & Control References

Advanced LabView Programming: Sequence Structures & Data Dependency Ch9

Midterm Testing (ends one-credit enrollment)

DAQ: Intro: basic input & output parameters / range, resolution & errors Ch5

DAQ: Intro input modes / sampling parameters / aliasing Ch5

DAQ: Measurement and Automation Explorer (MAX)

Waveform Generation via Hardware & Software

File IO with Binary & Text Formats

File IO Techniques, TDMS files, Code Inheritance and Refactoring

DAQ: Acquiring Measurements from Hardware

DAQ Programming Variables, Queues, Notifiers, Conditions & Data Communication

Control of Stand Alone Instruments Ch13

Communication Properties

Interface Bus / Instrument Driver / Signals

Transducers / Actuators / Sensors

VISA setup and query using Virtual Instrument Software Architecture

MAX-Advanced use of Measurement and Automation Explorer

Advanced External Control

Robotics & Mechatronics

Final Testing

Week One: Essick Chapter One

Lecture LabView1.pdf

Reading http://www.ni.com/getting-started/labview-basics/environment

Lab Activity: Essick Parity Checker & Palindrone Checker