Determining long term erosion rates in Panama
An application of ^{10}Be

Veronica Sosa–Gonzalez
Introduction and Background

- Erosion effects on water resources
- Human influences on sediment generation

Photo credits: K. Nichols
Introduction and Background

- Cosmogenic isotopes
 - Near-surface residence time
 - Provide long-term data

Diagram:
- Cosmic rays
- Quartz (SiO₂)
- \(^{26}\)Al, \(^{3}\)He, \(^{21}\)Ne
- \(^{3}\)He, \(^{10}\)Be, \(^{14}\)C
Introduction and Background

- Avoid sediment increase in Panama
- Use of cosmogenic nuclides, as a proxy for erosion, in tropical climates

Photo credits: US Agency of International Development
Objectives

- Determine long-term background erosion rates in Panama using ^{10}Be
- Explore the physiographic controls on erosion in tropical climates
- Quantify the sediment input on rivers as an effect of landslides

Photo credits: K. Nichols
Methods

- Sampling
 - 2002 – Rio Chagres
 - 2004 – comparison to Rio Chagres
 - 2007 – spatial variation of erosion rates

- 10Be extraction and analysis
 - UVM Cosmolab
 - LLNL Center for Accelerator Mass Spectrometry
 - CRONUS Earth

- Analysis
 - Spatial
 - Statistical
Preliminary Results

- Erosion rates (m/My) vs. Slope (degrees) with $R^2 = 0.0841$
- Erosion rates (m/My) vs. Elevation (m) with $R^2 = 0.051$
- Erosion rates (m/My) vs. Area km2 with $R^2 = 0.014$
Thanks for your attention