Towards a better understanding of meteoric ¹⁰Be and ⁹Be dynamics in river sediments

Sophie Greene MS Thesis Defense 5.24.16

main objectives

Part 1. ¹⁰Be and ⁹Be dynamics in fluvial systems

gain understanding of the meteoric ¹⁰Be proxy system by analyzing the composition of sediment grain coatings

assess the relative influences of remobilization processes, spatial heterogeneity of ¹⁰Be and ⁹Be inputs, and denudation rates on meteoric ¹⁰Be/⁹Be ratios of fluvial sediments

Part 2. meteoric ¹⁰Be/⁹Be-denudation rates

Compare meteoric ¹⁰Be/⁹Be denudation rates to known denudation rates (in situ based)

Outline

- Background
 - in situ ¹⁰Be
 - meteoric ¹⁰Be
 - native ⁹Be
 - meteoric ¹⁰Be/⁹Be denudation rates
- Motivation and goals
- Methods
- Results
- Discussion
- Conclusions

background, part 1. *in situ* ¹⁰Be production

- ¹⁰Be trapped in mineral grains
- Production determined by wellunderstood physics

background, part 1. *in situ* ¹⁰Be denudation rates

- slower denudation rates —> more in situ ¹⁰Be in grains
- need to have sand-size grains or greater and quartz lithology

background, part 1. meteoric ¹⁰Be production

- meteoric ¹⁰Be stored primarily in grain coatings; mobile
 - sorption potential varies by substrate, pH
- Delivery rate depends on
 - irradiation conditions
 - atmospheric mixing rates
 - precipitation rates
 - rates of dust deposition

background, part 1. meteoric ¹⁰Be dynamics

modified from Wiittmann et al. (2012). The dependence of meteoric ¹⁰Be concentrations on particle size in Amazon River bed sediment and the extraction of reactive ¹⁰Be/⁹Be ratios. Chemical Geology.

background, part 1. native ⁹Be

~100% of natural abundance

beryl Be₃Al₂(SiO₃)₆

Be²⁺ ion

(similar charge to radius ratio to Al³⁺)

modified from Wiittmann et al. (2012). The dependence of meteoric ¹⁰Be concentrations on particle size in Amazon River bed sediment and the extraction of reactive ¹⁰Be/⁹Be ratios. Chemical Geology.

part 1. motivation

- samples with known meteoric and *in situ* ¹⁰Be
 - can look at regional trends and trends across diverse study areas
- unique opportunity to compare *in* situ ¹⁰Be, meteoric ¹⁰Be, ⁹Be, total grain coating composition, and basin characteristics

available samples

202 fluvial sediment samples

(72 soil samples, 222 glacial lake varve samples, 60 suspended sediment samples)

methods, part 1. Extracting ⁹Be and method development

final method:

0.250 g, 2 mL 6M HCl, 24 hours extraction in heated ultrasonic bath

•	CPA-12 3M
•	CPA-12 6M
•	QLD-5 3M
+	QLD-5 6M
8	varve 3M
*	varve 6M

- testing 3 samples types with 2 acid treatments over 4 extraction times
- measured **Be**, Fe, Mg, Mn, Al, Si, Ti, Na, and K on Inductively Coupled Plasma Optical Emission Spectrometer

methods, part 1. Calculating basin parameters

modified from Nielson (2016). Using long and short-lived sediment associated isotopes to track erosion and sediment movement through rivers in Yunnan, SW China. (MS thesis)

mean basin slope total basin relief mean elevation mean latitude mean annual precipitation

latitude and precipitation used to calculate mean basin **meteoric** ¹⁰Be delivery rates

Methods, part 1. In Review

What I was given:

- in situ ¹⁰Be
- meteoric ¹⁰Be
- calculated *in situ* ¹⁰Be-derived denudation rates

What I measured:

- reactive ⁹Be
- mineral ⁹Be

What I calculated:

basin characteristics, meteoric ¹⁰Be delivery rates

What I want to learn more about:

- ⁹Be and parent materials
- meteoric ¹⁰Be and ⁹Be mixing
- relative importance of controls on ⁹Be and meteoric ¹⁰Be concentrations in grain coatings

results: part 1. ⁹Be abundances

⁹Bemin

⁹Be_{reactive}

results: part 1. ⁹Be and meteoric ¹⁰Be are correlated

- strong correlation in many study areas; no correlation in others
- AI, Fe, and Mn make up the largest percentage by mass of HCI-extractable materials

results: part 1. meteoric ¹⁰Be/⁹Be correlated to *in situ* ¹⁰Be

results: part 1. meteoric ¹⁰Be not correlated to ¹⁰Be_{met} delivery rates

no strong correlation across all samples

results: part 1. meteoric ¹⁰Be/⁹Be not correlated to denudation rates

no strong correlation across all samples

results: part 1. not many significant correlations between Be isotopes and basin characteristics

Table 3.

R² and p values of correlations between Be isotopes concentrations and MAP, mean basin slope, and total relief for each study area and for all samples.

			¹⁰ Be _{is}		¹⁰ Be _{met} / ⁹ Be _{reactive}		¹⁰ Be ₁₅ denudation rate		¹⁰ Be _{met} / ⁹ Be _{reactive} -derived denduation rate ^d	
study ID	n	basin parameter	R² p		R²	р	R ²	р	R ²	р
		MAP	⊲0.01	0.53	0.03	0.01	0.01	0.18	⊲0.01	0.45
All complete		mean basin slope	⊲0.01	0.46	0.03	0.01	0.46	⊲0.01	0.17	⊲0.01
	202	total relief	0.02	0.03	0.11	⊲0.01	0.55	⊲0.01	0.42	⊲0.01
Airsamples	202	mean elevation	0.08	0.07	⊲0.01	0.62	0.43	⊲0.01	0.22	⊲0.01
		mean latitude	0.01	0.25	0.03	0.01	0.10	⊲0.01	0.05	⊲0.01
		basin size	0.01	0.09	0.04	0.01	0.33	⊲0.01	0.24	⊲0.01

- correlations in bold print have $R^2 > 0.30$ and p value < 0.05
- significant correlations between *in situ* denudation rates and slope, total relief, mean elevation, and basin size (positive correlations)
- not strong and significant correlations between meteoric ¹⁰Be/⁹Be or *in* situ ¹⁰Be and basin parameters

discussion, part 1. ⁹Be concentrations in grains lower than bedrock

- mineral and reactive ⁹Be concentrations lower than mean crustal abundance (2.5 µg/g)
 - sand sized sediments collected (250-850 μm)
 - ⁹Be in dissolved phase

Sample	$f_{ m diss}^{^9{ m Be}}$	$f_{ m reac}^{ m ^9Be}$	$f_{\min}^{^{9}\mathrm{Be}}$	$f_{\rm reac}^{^9{\rm Be}}+f_{\rm diss}^{^9{\rm Be}}$
Amazon at Macapa/Obidós	0.029	0.23	0.74	0.26
Solimoes at Manaus	0.018	0.11	0.87	0.13
Negro at Manaus	0.65	0.29	0.06	0.94
Amazon Andean Rivers	0.002	0.29	0.71	0.29
Beni	0.001	0.31	0.69	0.31

modified from Wittmann et al., (2012). The dependence of meteoric ¹⁰Be concentrations on particle size in Amazon River bed sediment and the extraction of ¹⁰Be/⁹Be ratios, California. *Chemical Geology*

discussion, part 1. wide range of ⁹Be reactive concentrations

Figure 8. Photograph of the Upper Freeport coal bed in Pennsylvania. Person is pointing to the upper contact of the coal bed. Note the overlying sandstone. (Photograph courtesy of James Shaulis, Pennsylvania Bureau of Topographic and Geologic Survey.)

- Upper Freeport coal bed enriched in Be relative to sediment: mean concentration = 1.80 ± 0.81 μg/g, max concentration = 5 μg/g
- higher reactive ⁹Be concentrations in samples from north branch of Potomac River than main stem
- ⁹Be in parent materials influences ⁹Be in grain coatings, even in regional studies

discussion, part 1. meteoric ¹⁰Be and ⁹Be correlated in grain coatings

Terraced agriculture

- correlation suggests ¹⁰Be_{met} deposited on the surface and ⁹Be weather from buried bedrock are mixed in grain coatings
- exception = CHc study area
- anoxia in flooded hillslopes prevents biotic mixing

Parent Basin: 11 Collection Date: 6/8/13 Latitude: 21.958 Longitude: 100.179 Sample Type: RS Additional Notes: Small tributary of N. arm of basin 11 with anabranching channel. Sample collected from immediately above small diversion structure.

discussion, part 1. stronger correlation between meteoric ¹⁰Be/⁹Be ratios and ¹⁰Be_{is} than ¹⁰Be_{met} alone

- significant correlation with ¹⁰Be_{is} for all data
- weak correlation (or none at all) when considering regional data
- biological remobilization, leaching processes influence meteoric ¹⁰Be/⁹Be
- these effects obscure correlations when only considering ¹⁰Be_{is} that span a few orders of magnitude

discussion, part 1. ¹⁰Be_{met}/⁹Be ratios not correlated to denudation rates

• indicates influence of remobilization and leaching

discussion, part 1. processes that decouple grains and grain coatings

- acidic soil environments; leaching
- anoxic environments; leaching
- physical abrasion

Table 3.

R² and p values of correlations between Be isotopes concentrations and MAP, mean basin slope, and total relief for each study area and for all samples.

			¹⁰ Be _{is}		¹⁰ Be _{met} / ⁹ Be _{reactive}		¹⁰ Be ₁₅ denudation rate		¹⁰ Be _{met} / ⁹ Be _{reactive} -derived denduation rate ^d	
study ID	n	basin parameter	R² p		R²	р	R ²	р	R²	р
		MAP	⊲0.01	0.53	0.03	0.01	0.01	0.18	⊲0.01	0.45
All complex		mean basin slope	⊲0.01	0.46	0.03	0.01	0.46	⊲0.01	0.17	⊲0.01
	202	total relief	0.02	0.03	0.11	⊲0.01	0.55	<0.01	0.42	⊲0.01
Airsamples	202	mean elevation	0.08	0.07	<0.01	0.62	0.43	⊲0.01	0.22	⊲0.01
		mean latitude	0.01	0.25	0.03	0.01	0.10	⊲0.01	0.05	⊲0.01
		basin size	0.01	0.09	0.04	0.01	0.33	⊲0.01	0.24	⊲0.01

- confirms previous findings of correlation between *in situ* denudation rates and slope, total relief, mean elevation, and basin size (positive correlations)
- lack of correlations affirms suggestion that meteoric ¹⁰Be/⁹Be ratios are influenced by remobilization, grain size, and heterogeneous source materials

conclusions, part 1.

- total meteoric ¹⁰Be stored in AI, Mn, and Fe dominated grain coatings
- spatial heterogeneities in ¹⁰Be and ⁹Be inputs influence concentrations in grain coatings.
- meteoric ¹⁰Be and ⁹Be well mixed in most grain coatings, but not in all study areas
- meteoric ¹⁰Be/⁹Be ratios are influenced by remobilization and leaching processes, not just denudation

part 2. meteoric ¹⁰Be/⁹Be derived denudation rates

- mass balance model that controls for heterogeneity in inputs, and calculates meteoric ¹⁰Be/⁹Be-derived denudation rates
 - assumptions needed to apply model
 - compare meteoric ¹⁰Be/⁹Be based denudation rates to in situ based denudation rates

background, part 2. mass balance model for ¹⁰Be/⁹Be denudation rates

methods, part 2. estimating constants

$$D = \frac{F_{met}^{10 Be}}{[^{9}Be]_{parent} * f.factor * \left(\frac{10Be_{met}}{9Be_{reactive}}\right)} eq. 1$$

mean ¹⁰Be_{met} delivery rate for the study area calculated from empirical model based on latitude and MAP (Graly et al., 2011)

total measured ¹⁰Be_{met} and acid-extractable ⁹Be for each sample

results: part 2. methods of calculating f.factor do not agree

Table 4.

Mean denudation rates calculated from ¹⁰Be_{is} and ¹⁰Be_{met}/⁹Be_{reactive} mass balance model (eq. 1) with ⁹Be parent concentrations either assumed to be 2.5 ppm or the mean ⁹Be_{min}+⁹Be_{reactive} for each basin.

Study	mean 1 deriv denudatio	^{Io} Be _{is} - ved on rate ª	mea ¹⁰ Be _{met} /ºBo derive denudatio (total parer 2.5)	n e _{reactive} - ed on rate nt ⁹ Be =	percent difference from ¹⁰ Be _{is} -derived denudation rate	mean ¹⁰ Be _{met} / ⁹ Be _{reactive} - derived denudation rate (total parent = ⁹ Be _{min} + ⁹ Be _{reactive}) ^b	percent difference from ¹⁰ Be _{is} -derived denudation rate
	t km ⁻²	² yr⁻¹	t km ⁻²	yr⁻¹	%	t km ⁻² yr ⁻¹	%
POT	30 ±	16	40 ±	26	35	141 ± 89	370
QLD	74 ±	45	81 ±	28	10	476 ± 162	543
G	44 ±	22	30 ±	4	35	133 ± 18	202
CH1xx	403 ±	268	552 ±	396	37	2030 ± 1450	404
CHa	160 ±	142	14 ±	14	-91	24 ± 14	-85
CHb	311 ±	88	42 ±	15	-86	259 ± 91	-17
CHc	128 ±	39	61 ±	33	-52	113 ± 61	-12
all samples	202 ±	226	205 ±	226	1	768 ± 1190	278

^a calculated with the CRONUS erosion rate calculator (Balco et al., 2008) in previous studies (Trodick, 2011; Portenga and Bierman, 2011; Nichols et al., 2014; Nielson, 2016)

^b total parent assumption applied to f.factor calculation and ⁹Be_{parent}; mean ¹⁰Be_{met} deposition rate is used for each study area

results, part 2. meteoric ¹⁰Be/⁹Be denudation rates significantly correlated to *in situ* denudation rates

results, part 2. meteoric ¹⁰Be/⁹Be denudation rates not significantly correlated to *in situ* denudation rates in many study areas

- no statistically significant correlation in 3 of 7 study areas
- R² is almost always < 0.30

discussion, part 2. how assumption influence ¹⁰Be/⁹Be denudation rates

$$D = \frac{F_{met}^{^{10}Be}}{[^{9}Be]_{parent} * f.factor * \left(\frac{^{10}Be_{met}}{^{9}Be_{reactive}}\right)}$$

eq. 2

$$f.factor = \frac{{}^{9}Be_{reactive}}{{}^{9}Be_{reactive}} + {}^{9}Be_{\min}$$

- $[^{9}Be]_{parent} = {}^{9}Be_{min} + {}^{9}Be_{reactive}$
- assumes negligible ⁹Be in dissolved phase
- underestimates dissolved ⁹Be
- underestimates parent ⁹Be

eq. 3

$$f.factor = \frac{{}^{9}Be_{reactive} + {}^{9}Be_{diss}}{2.5}$$

[⁹Be]_{parent} = 2.5 ppm = ⁹Be_{reac} + ⁹Be_{min} + ⁹Be_{diss}

- assumes all "missing" ⁹Be is from ⁹Be in the dissolved phase instead of ⁹Be in fine grained minerals
- overestimates dissolved ⁹Be;
 overestimates f.factor

eq. 2 more likely to overestimate denudation rates

Table 4.

Mean denudation rates calculated from ¹⁰Be_{is} and ¹⁰Be_{met}/⁹Be_{reactive} mass balance model (eq. 1) with ⁹Be parent concentrations either assumed to be 2.5 ppm or the mean ⁹Be_{min}+⁹Be_{reactive} for each basin.

Study	mean ¹ deriv denudatio	¹⁰ Be _{is} - ved on rate ª	mea ¹⁰ Be _{met} /9Be derive denudatio (total parer 2.5)	n e _{reactive} - ed on rate nt ⁹ Be =	percent difference from ¹⁰ Be _{is} -derived denudation rate	mean ¹⁰ Be _{met} / ⁹ Be _{reactive} - derived denudation rate (total parent = ⁹ Be _{min} + ⁹ Be _{reactive}) ^b	percent difference from ¹⁰ Be _{is} -derived denudation rate
	t km ⁻²	² yr-1	t km ⁻²	yr⁻¹	%	t km ⁻² yr ⁻¹	%
POT	30 ±	16	40 ±	26	35	141 ± 89	370
QLD	74 ±	45	81 ±	28	10	476 ± 162	543
G	44 ±	22	30 ±	4	35	133 ± 18	202
CH1xx	403 ±	268	552 ±	396	37	2030 ± 1450	404
CHa	160 ±	142	14 ±	14	-91	24 ± 14	-85
CHb	311 ±	88	42 ±	15	-86	259 ± 91	-17
CHc	128 ±	39	61 ±	33	-52	113 ± 61	-12
all samples	202 ±	226	205 ±	226	1	768 ± 1190	278

^a calculated with the CRONUS erosion rate calculator (Balco et al., 2008) in previous studies (Trodick, 2011; Portenga and Bierman, 2011; Nichols et al., 2014; Nielson, 2016)

^b total parent assumption applied to f.factor calculation and ⁹Be_{parent}; mean ¹⁰Be_{met} deposition rate is used for each study area

Regional underestimate of meteoric ¹⁰Be deposition rates in SW China study areas?

conclusions, part 2.

- Meteoric ¹⁰Be/⁹Be denudation rates agree with known in situ-based denudation rates across all samples
- uncertainties in parent ⁹Be, f.factor, and meteoric ¹⁰Be delivery rates, in addition to biogeochemical influences on meteoric ¹⁰Be/⁹Be, add noise to the denudation rate proxy

Thank you!

Questions?

discussion, part 2. uncertainties in meteoric ¹⁰Be delivery rates add noise to correlation between denudation rates

- heterogeneities in ⁹Be parent concentrations and meteoric ¹⁰Be delivery rates within study areas not quantified in mass balance model
- meteoric ¹⁰Be/⁹Be is influenced by leaching and remobilization

meteoric ¹⁰Be/⁹Be ratios influenced by biogeochemical processes (stronger influence on regional scale) and spatial heterogeneity in Be inputs (stronger influence across all data)

• correlation between meteoric ¹⁰Be and reactive ⁹Be

meteoric ¹⁰Be delivery rates depend on precipitation rate and latitude reactive ⁹Be controlled by parent ⁹Be concentrations and weathering rates

• no correlation between meteoric ¹⁰Be to ¹⁰Be delivery rates

