EROSIONRATES IN'AND AROUND
SHENANDOAH NATIONAL PARK, VA,
DETERMINED USING ANALYSIS OF
COSMOGENIC '°Be
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» Determine erosion rates in and around the Park on a 103 to 10° year "
timescale

% & To determine whether average erosion rates differ between the four =
lithologies cropping out in the Blue Ridge province within the :
Shenandoah National Park.

5 f"-., % To test Hack's (1960) model of dynamic equilibrium and steady state
- ‘behavior. :

To compare the relationships between '°Be-based erosion rates and ==
slope, basin area and lithology with other Appalachian Mountain
range studies such as Matmon et al. (2003a, 2003b) Reuter et al.
(2005); and Sullivan et al. (accepted).

To examine the relationship between 1°Be concentration and grain
size in the context of previous research by Matmon et al. (2003b),

Brown et al. (1995), Clapp et al. (1997 1998 2001 2002) and
Sullivan et al. (accepted)
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Introduction - Physical Setting
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Introduction - Physical Setting

D OC Carbonates

I:' CCh Quartzite and
siliciclastic

D Zc Catoctin Formation
‘:] Zyg Granite

Zs Swift Run Formation
(fine-grained siliciclastics)
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siliciclastic

E] Zc Catoctin Formation
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Techniques for Estimating
Erosion Rates
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Sediment Yields

. - years to decades
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Inferring Basin Scale
Erosion Rates

Fast Erosion Slow Erosion
% 10Be accumulation /“/—- /“/—-
increases near the / /
surface / /
l l
+»» 10Be concentration is
h1gl_1 in slowly eroding Crust Crust
basins
Short Residence Long Residence

Time Time



Inferring Basin Scale Erosion Rates

. Interfluve
*» Rivers transport Drainage Divide

sediments from
basins, therefore,
concentration of 1°Be
in stream sediment
indicates sediment
production rate

Mouth Main Stream

¢ Corrections are applied to account for basin altitude and latitude

¢ Time Scale of erosion rates = 10,000-100,000 years




Assumptions

¢ Steady state erosion e.g. erosion is constant and
continuous - rate of uplift and erosion remain
unchanged over time.

¢ Isotopic concentration of all sediment being generated
and transported out of a basin is constant over time -
tested by Matmon in the Great Smoky Mountains.

¢ For both sediment and bedrock it is assumed that the
cosmic ray flux is constant over time, that there has

. been no ephemeral shielding from soil, snow, or

- sediments, and that the nuclide production rate is

~  known. =

| .

< For sediment, additional assumptions include constant
~ | or minimal sediment storage in the sampled basin, ‘.
- steady rates of erosion, adequate mixing of sediment, ;"f
** and homogenous quartz distribution. PLon
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<+ Sample colléctio




GIS Analysis

(Digital Elevation Models) along with bedrock geology
and National Hydrography Datasets (NHD) provided the

stream layer.

size.

: %+ Sampling sites chosen according to specific criteria

including basin size, mean slope and lithology.




X To test the effect of llthology on erosion rates
.~ _usingthe four ‘major llthologles within the Park -
granite, metabasalt quartz1te and 5111c1c1ast1c
s . rocks, and original parameters."
FE. % Sedlment was sampled from 41 single- llthology

llcatlonsL 11

T multlllthology basms and - bé ock outc
U5 % Four-nitial sample sites, one for g@c _~ 1o
“~were collected in the followmg graln-[ € plits
At thesg first four sample sites grain- size spllts
(‘“as 0.85 mm; 085 =2 mm, 2 - 10mm and>10
~mmJin order to test the relatlonshlb betweﬁn«\ b
10Be concentratmns and graln size. UGS NS
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< 54 samples from-, "%
active river or e
stream channels - g4
(0.5-1Kkg of
sediment)

— « All samples sieved
to the 0.25 - 0.85
—-  mm Size fraction:

,;_' % 5 bedrock'samples
~  (~1kg) '
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X Quartz was purified in the UVM Mineral Separation Lab:

- Two 24-hour ultrasonic etches of samples in hot
6N HCL

- Three 24-hour ultrasonic etches in dilute HF/HNO,.

- Density separation to remove heavy minerals such as
magnetite and ilmenite.

- 48-hour etch in dilute HF/HNO,.

 10Be was isolated inm'the UVM Cosmogenic Laboratory
(grain-size/splits).
“* The 19Be isolated from the grain-size splits was

measured using accelerator mass spectrometry (AMS) at
the Lawrence Livermore Laboratory.

» The remaining samples were processed to isolate '°Be at
the GU-SUERC Cosmogenic Nuclide Laboratory (€CNL) at
the Scottish'Universities Environmental Research Centre

in EastKilbride, Scotland
wi . o
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Calculatlon of Erosmn Rates from

1‘)Be Concentratlons .
i bl Mot i %0 L E R Dike ey M
s 10Be concentratlons of the initial four samples with

= grain-size splits were normalized using standards

. developed by Nishiizumi at LLNL assuming a 1°Be half-

% “ lifeof1.5 My:.

Ji% The remaining samples analyzed:at CNL using the
standard NIST (SRM4325) (National Institute of
Standards and Technology.

**-HBe concentrations of all the samples were then

corrected for latitude-altitude based on the polynomials

B of Lal(1988) for neutrons only.

: <+ Basin scale erosion rates were modeled using the

interpretive model of Bierman and Steig (1996) with a

normalized sea level, high latitude °Be production

rate of 5.2 atoms gL quartzyr:!, anattenuation depth of

165 g cm and assumlng | rock denSIty of 2.7 g cm N /o4
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Data - Fluvial Samples

e S T —k
. ** Inferred erosion rates for the basins range from 3.8 + O 5
ifg - 23.6 = 3.0 m/My for all lithologies.

& < The mean erosion rate for single-lithology basins 1
- *4.8m/My (n=43).

- The erosion rate ranges by lithology are:
- granite, 7.9-21.8 m/My;
- metabasalt 4.8- 23.6 m/My;
- quartzite 4.7-16.8 m/My;
- siliciclastic rocks 6.2-16.7 m/My.

*+ The mean erosion rate for multilithology basins (n-=11) is
10.2 =4.6 m/My, with.a range of 3.8-17.6 m/My.

** Erosion rates for the Shenandoah'and Rappahannock
Rivers are 7.3 = 0.9 m/Myand 13.8 = 1.8.m /My,
respectively.
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al Samples By Lithology
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Data - Fluvial Samples

Erosion rates on the
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and to compare the relatlonshlps between 1°Bq"' based

erosmn rates and slope basm area
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&€ Mean (fluvial erosion rate)
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+Comparing Erosion

tes - Lithology
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€ Mean (fluvial erosion rate)
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. " Discussion: Comparing Erosion
C % Rates - Lithology

" < The lack of a definitive relationship between basin-
. scale erosion rates and lithology echoes previous
work in the Great Smoky Mountams (Matmon and




A

cussion: Comparing Erosion

_Rates - Lithology

b

e te only lithology for which
i “’elgtion between erosion
2 = 0.49). |
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Discussion: Comparlng Erosion

Rates Graln Slze Analy51s T
Ob]ectlve to determme whether gram size =%y
influences 1°Be concentrationiin fluvial sediment.:

Brown et al. (1995) suggested that lower ""Be
concentrations in larger grain sizes could‘resuit
from mass wasting events that excavate and carry | %" :
prekusly shielded coarse material rapldly down & i
slope. e

¢ % Matmon et al. (2003) suggested that the systematlc
* ' difference in 1°Be’ concentrations between small
and large grains in the Great Smoky Mountams R4
results from source area. elevation and clast | 3 a«ak
transport dlstance 3,
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1"Be Concentration (x 10° atoms/g)

1"Be Concentration (x 10° atoms/g)
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Discussion : Comparmg Erosion >

g _Rates - Gram Slze Analysis_

i ae b TR .&Sz i u'} s ﬁ.nlui &5

I« Grain-size specific cosmogenlc analysis of four =g

" sediment samples showed no consistenttrend of- .
concentratlon and indicate ~26 to 34 % d1fference§

** on average between the sand- fra}uon (250-850
mm) analyzed and larger gram sizes.

—\ \:
O
-

-

R leferences may account for the~var1ab1]1ty in-
: calculated erosion rates observed between basins

' and may reflect dlﬁerent source areas or processes
dellvermg dlfferenbgram 51zes to the chann%s.M
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S Ob]ectlves

To compare the relatlonshlps between 10Be bas
erosion rates and slope, basin area and litholo
other Appalachlan Mountain range studles suchas .
. | Matmon et al. (20033 2003b) Reuter >et al. (2( 05) and
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Placmg Shenandoah Reglon Erosmn
Rates in Context
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are in general
e Appalachian

| % Cosmogenically determined bedrock le erosion rates for

the Shenandoah National Park region
consistent with those estimated else
Mountains: in schist and gneiss for the Blue Ridge just
above the Blue Ridge Escarpment ivan et al., accepted), ~300 km
to the south; and are similar to those in the Valley and Ridge of the
Susquehanna Rive euter etal., 2005).

Rates do vary in otherareas of the Southern Appalachians: in the
Great Smoky Mountains (27 &= 6 m/My); Matmon et al., 20033;

Matmon et al., 2003b).

The average bedrock erosion rates around Shenandoa
m/My) are similar to the sar ae.on the Appalachian F

Hancock and Klrwan 2007)

and of the granite of Pann in the Georgia Piedmont (7

Dolly Sods, West Virgini
m/My, Bierman, 1993)

|




Erosion rates in the
context of other research:

- Matmon et al. (2003)
25 -30 m/My

- Reuter et al. (2004)
4 - 54 m/My

- Spotila et al. (2004)
10 - 20 m/My

- Naeser et al. (2005)
20 m/My

- Sullivan et al. (2007)
12.5 m/My

- This study

11 m/My
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% Why does the Blue Rldge of the Shenandoah National Park
' arealook the way it does?

between erosion rate and basin average slope in the Park.

L < This is in contrast to elsewhere in the Southern

Appalachians such as the Great Smoky Mountains, the
Blue Ridge Escarpment, and the Susquehanna Drainage
Basin where erosion rate and slope are positively and
significantly correlated.

TS ) G TR

' %* We can explore this 1ndependence of erosion rate from ,
i slope, lithology, and basin area via Hack’s (1960) model of a
dynamic equ111br1um. | % :




Hack’s Dynamic Equilibrium

Uniformly eroding topography
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Differences in erosional resistance or rock
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erosion rate

Hack’s Dynamic Equilibrium

The independence of erosion rate from slope, lithology,
and basin area in the Shenandoah
region dataset supports Hack’s model of dynamic

equilibrium
S
E )
15 3
“ @
P
<)

slope lithologic resistance lithologic resistance
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In general average erosion rates do not dlffer between llthologles

The lack of significant lithologic and slope relationships with basin-
scale erosion rates supports Hack’s (1960) model of dynamic
equilibrium where landscape morphology is adjusted to the
erosional resistance of the underlying rock over the long-term.

The erosion rates (~11 m/My) in this study’s region are similar to
those found in otherparts of the Appalachians, e.g. Blue Ridge
Escarpment (12.5 M/My); Susquehanna River Valley (13 m/My).

Grain size does not affect 1°Be concentration.

The landscape of the Blue Ridge Province isa product of slow
erosion, with millennial scale erosion rates averaging ~11 m /My,
similar to'post-orogenic denudation rates integrated over tlmes
periods 1 to 2 orders of magnitude longer. -

Steady erosion ever time suggests that the region’s landscape may
well have remained grossly similar for millions of years.




Future Work

*+ Lower erosion rates of quartzite rocks and the
presence of less resistant rocks on the ridgeline:

including a deeper integration of ongoing
structural studies

¢ Further bedrock sampling to aid understanding of
rock resistance and the importance of local
variations in rock

A collaborative study integrating cosmogenic and
themochronologic data
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