

Overview

Unanswered Questions:

- Has the Greenland Ice Sheet been stable in size over time?
- If not, how many times has it melted significantly?
- How extreme are melting events?
- What is the spatial distribution of melting?

Overview

Goals:

- Use cosmogenic burial dating to investigate times when the Greenland Ice Sheet was reduced in size
- Understand how the ice sheet behaves during interglacial periods

Cosmogenic Nuclide Dating Basics

Cosmogenic Nuclides:

- ¹⁰Be (half life = 1.3 Ma), measured in quartz
- 26 Al (half life = 0.7 Ma), measured in quartz
- 36 Cl (half life = 0.3 Ma), measured in potassium feldspar
- 14 C (half life = 0.005 Ma), measured in quartz

<u>Burial Dating:</u> Use cosmogenic nuclide concentration to determine how long a surface has spent exposed versus how long it has spent shielded

Sampling

Northernmost:

Upernavik, 72°N

Hypothesized melting: small

98 ice-bound clasts

Middle:

Ilulissat, 69°N

Hypothesized melting: ?

73 ice-bound clasts

Southernmost:

Kangerlussuaq, 66°N

Hypothesized melting: great

100 ice-bound clasts

Kangerlussuaq

Kangerlussuaq: "Dead Ice" Zone

Kangerlussuaq: Drained Lake

Kangerlussuaq: Outwash

Upernavik

Upernavik: Inclined Ice Faces

Upernavik: Vertical Ice Faces

Upernavik: Outwash

Ilulissat

Ilulissat: Inclined Ice Faces

Additional Sampling

Bedrock Samples1 from Kangerlussuaq20 from Upernavik16 from Ilulissat

Boulder Samples
13 from Upernavik
15 from Ilulissat

Holocene Exposure Clasts

- 3 from Kangerlussuaq
- 3 from Upernavik
- 4 from Ilulissat

Laboratory Work

Physical Preparation

- Crushing
- Grinding
- Sieving for 250-710µm grain size fraction
- Magnetic separation

170 samples during August

Laboratory Work

Chemical Preparation

- Two 24-hour etches in hot HCl
- Three 24-hour etches in hot HF/HNO₃
- Density separation
- One 72-hour etch in hot HF/HNO₃

75 samples (all bedrock, boulder, and Holocene exposure clasts) during September, October, and November

Timeline

Time Period	Bedrock, Boulders, and Holocene Exposure Clasts	Burial Dating Clasts
Fall 2008	Make quartz	Finish crushing, grinding, etc.
Winter 2008/2009	Perform dissolutions, isolate Be and Al, perform isotopic analysis	Etch all samples in HCl, isolate kspar if possible, begin HF/HNO ₃ etches
Spring 2009	Analyze data, begin writing manuscript	Continue HF/HNO ₃ etches, begin dissolution and isotopic analysis
Summer 2009	Finish manuscript	Continue with etches and isotopic analysis
Fall 2009	Present results at GSA or AGU	Continue isotopic analysis, begin data analysis, present preliminary data at AGU(?)
Winter 2009/2010	Begin writing thesis	Continue data analysis, begin writing thesis
Spring 2010	Finish data analysis, finish writing thesis, present and defend	
Summer 2010		Write manuscript
Fall 2010		Present results at AGU

Acknowledgements

Collaborators:
Paul Bierman
Tom Neumann
Joseph Graly

Funding: NSF

Thesis Committee:
Shelly Rayback
Stephen Wright

