

1 Influence of *Amyntas agrestis* and *Lumbricus rubellus* on Soil and Atmospheric C and N

2 *Ryan Melnichuk*

3 *Department of Plant and Soil Science, University of Vermont, Burlington VT USA 05405*

4 **Abstract**

5 Many studies of invasive species focus on the resultant change in ecological interactions due to
6 addition/loss from the trophic structure and resulting change in energy flow. Environment-organism
7 interactions are important to understand due to increase anthropogenic introductions and climate
8 change. In many Northeastern states, exotic earthworms have invaded forest soils, thereby bringing
9 changes to forest floor ecology and chemistry. A 90 day mesocosm study was undertaken to examine
10 the effects of earthworm invasion on C and N dynamics. Two epi-endogeic invasive earthworm species
11 *Lumbricus rubellus* and *Amyntas agrestis* were selected for study. Greenhouse gas production by total
12 mesocosm and soil were monitored. Gas flux measurements on 11 dates indicate both worm species
13 increase CO₂ and N₂O emitted from mesocosm system as well as soil. Mesocosm total C and N (mass
14 balance) indicate significantly less N but no change in C between treatments and control. This indicates
15 a disruption of denitrification by earthworm invasion that results in increased N₂O emissions, a potent
16 greenhouse gas. Also, gross soil C measurement on a short time scale may be insufficient to estimate
17 changes to a system in the long term. Conclusively, small organisms can have a substantial impact when
18 habitual behavior is continued en masse.

19 **Introduction**

20 For the past 13 millennia, the humid temperate forests in the Northeastern US developed in the
21 absence of earthworms (reference). The result of this absence has seen the development of forest
22 floors with thick O and well distinguished mineral horizons. With the arrival of European settlers, so

23 began the introduction of earthworms (a new trophic level) into this region. In the last 5 centuries,
24 many more species have gained a foothold and modified ecosystems in very pronounced ways
25 (reference).

26 Earthworm ontogeny is varied; however there are common functions and invasion outcomes.
27 Generally, worms can be classified into three ecological groups: anecic, epigeic, and endogeic. Epigeic
28 worms live within the surface litter, endogeic worms construct horizontal burrows in the top mineral
29 horizon of the soil and anecic worms construct deep, vertical burrows. Though life histories may vary,
30 earthworms consume or/and mix organic material which is then mineralized and distributed through the
31 soil profile (Darwin, 1882). This action serves to modify the soil properties (CEC, pH, nutrient
32 distribution, soil structure) that can have a major impact on microbes and vegetation. Notably, there is
33 a loss or major decrease in surface organic horizons which serves as both a seed bank and habitat for
34 micro and meso fauna.

35 Many Northeastern Forests have reached a saturation (or equilibrium) point; destabilizing these
36 systems can have profound effects (EPA). Carbon storage of forest soils can conservatively be in the
37 area of 100 metric tons per hectare. With the invasion of earthworms, forest floor dynamics can be
38 modified in a very profound manner.

39 The objective of this work is to quantify and compare epigeic invaders *A. agrestis* (Görres et al.,
40 2012) and *L. rubellus* (reference) on greenhouse gas production and resultant total and soil C and N.
41 Though these species have similar life histories, they originate on opposite sides of the globe and exhibit
42 characteristically different behaviors (estivation, autotomy), so investigating ecosystem effects may
43 show variable effects.

44 **Material and Methods**

45 Materials

46 Soil was collected from Camel's Hump State Park (Duxbury, VT). The area was selected for
47 absence of invasive earthworms whilst vegetation and over story were consistent with Northern
48 Hardwood Forest, a commonly invaded biotype (Thompson et al.). Leaf litter, A and B horizon was
49 collected and transported to UVM soils lab. Leaf litter was macerated and sieved to 7.5 mm while soil
50 was sieved at 2 mm to remove non-soil particles.

51 Naturalized *Amynthas agrestis* and *Lumbricus rubellus* earthworms were collected from Jericho
52 Research Forest (Jericho, VT-University of Vermont). Earthworms were acclimated to laboratory
53 temperature and humidity for one week while being fed ad libitum.

54 Mesocosms consisted of glass housing with impermeable base and restricted egress sealable lid
55 (to prevent earthworm escape).

56 Method

57 A two way factorial design was conceived with A horizon as one factor and worm treatment as
58 second factor. To each mesocosm homogenized B horizon soil was added (1100 +/- 5 g). To half of the
59 mesocosms, homogenized A horizon soil was added (50.00 +/- 0.05g). To all mesocosms, homogenized
60 leaf litter was added (10.00 +/- 0.05g). Mesocosms were randomized and then assigned to worm
61 treatment. Earthworm treatments consisted of none (control) or two individuals of *A. agrestis* or *L.*
62 *rubellus*. Each treatment was replicated 5 times for a total of 30 mesocosms.

63 Mesocosms were held at standard laboratory temperature (19-21 °C) under ambient daylight
64 for 90 days. Soil moisture was monitored by total mass throughout the study and average loss from
65 control treatments was added back by simulated dew deposition.

66 Analysis Methods

67 Data collection included water loss, interval and evolution of CO₂, N₂O and CH₄ and
68 quantification of total C and N. Mesocosms were weighed (Metler-Toledo) every 3 days and water
69 replaced at loss rate of controls to simulate stable dew/precipitation. At establish dates, mesocosms
70 were sealed for 30 minutes and gas sampled at three intervals to determine system flux rate. On four
71 dates, equivalent soil samples were collected from surface of mesocosm and sealed in glass vials for 12
72 hours with subsequent quantification of gases. All gas measurements were performed using a Shimadzu
73 GC-17 Gas Chromatograph equipped with FID and ECD. Total C and N were quantified in duplicate for all
74 soil layers, leaf litter, worms and gas sampled soils (Thermo C N analyzer). Mesocosm totals were
75 determined by mass balance with subtraction of earthworm contribution.

76 **Statistical Analysis**

77 All analysis was performed using SAS 9.3 (SAS Institute, Cary, NC). For mesocosm gas evolution,
78 PROC MIXED analysis was performed where fixed effects are horizon, earthworm and time while
79 mesocosm number is random. SLICE function was performed where interaction term was significant to
80 determine significance of simple effects. DDF estimate was set to Kenward-Roger as dates were not
81 evenly spaced. A simple two way crossed factorial ANOVA was performed for mesocosm total C and N,
82 cumulative water loss and vial gas evolution. All data sets were examined for normality and equal
83 variance by univariate procedures.

84 **Results**

85 **Gas**

86 Mesocosm gas flux was significantly influenced by earthworms. CO₂ flux was greater for
87 earthworm additions but not A-horizon addition (Figure 1, Table 1). Earthworm*Time interaction was
88 split by SLICE function, which showed all dates were significant except for day 33 and 60. N₂O flux was

89 also significantly increased by earthworm addition but not A- horizon presence/absence (Figure 2, Table
90 2).

91 Soil C and N

92 Total mesocosm N but not C was influenced by earthworm presence. Total mesocosm C did not
93 vary significantly amongst worm treatment Figure 3, Table 3). Total mesocosm N was significantly higher
94 in earthworm addition mesocosm, despite correction for addition by worm (Figure 4, Table 4). In both
95 cases, A-horizon treatments showed higher C and N as A-horizon soil addition would have included
96 significant additions of both elements.

97 ***To also be included in near future, water loss, vial gas evolution and rates per C and N and remaining
98 mass balance fractions***

99 Discussion

100 These data support the hypothesis that earthworms are ecosystem engineers that have
101 influence on not only trophic interactions but also environmental abiotic properties.

102 Most commonly, forest floor structure changes have been observed in both field and laboratory
103 studies. A microcosm study with simulated *Acer/Fagus* soil indicated an increased loss of leaf litter to
104 mineral horizons with addition of earthworms (Hale 2008). Ecosystems studies in temperate hardwood
105 forests have consistently indicated decreased O horizon thickness and modified forest floor structure
106 (Bohlen 2004, Groffman 2004). Notably at invasion fronts of northern hardwood forests, disappearance
107 of the O horizon, increased depth of the A horizon, increase in bulk density and decrease in fine root
108 mass have been observed (Hale et al, 2005, Lawrence et al, 2003). As indicated above (too follow),
109 surface leaf litter remaining at the end of the study period was significantly less in the presence of
110 earthworms than control. Implications of decreased litter mass and cover increases the susceptibility to

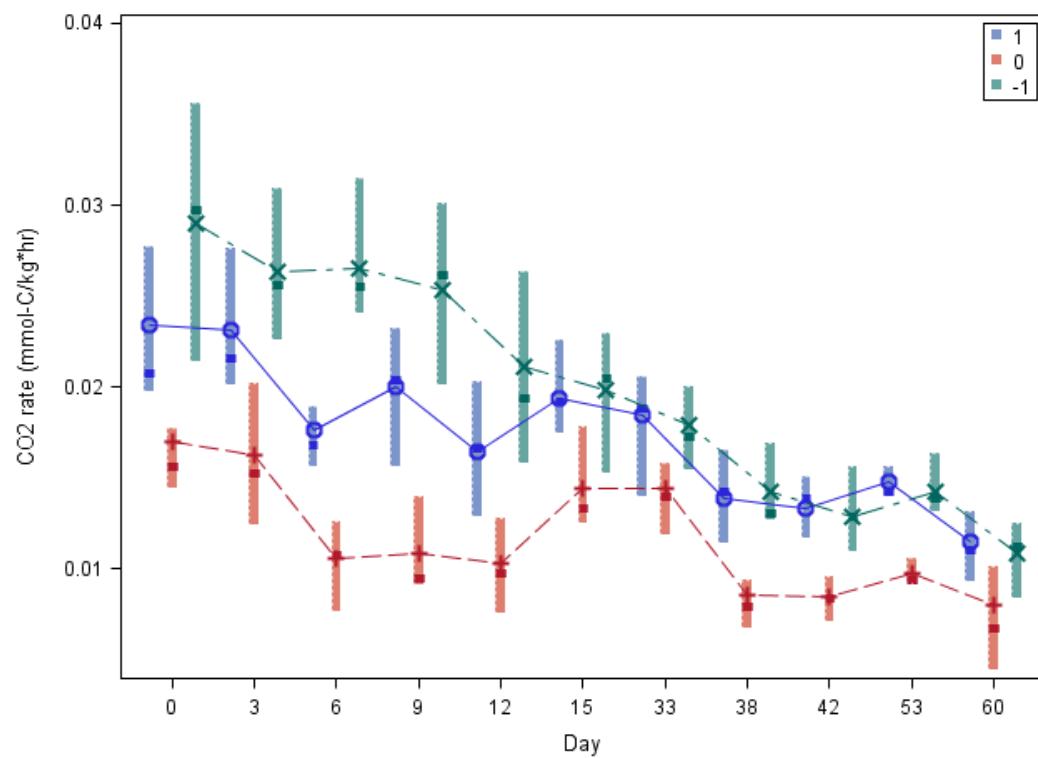
111 invasion by exotic plant species (Belote, 2009). This, tied to chemical soil changes may also contribute
112 to changes in the plant community with particularly great shifts in observed understory community
113 (Eisenhauer et al, 2009 and Addison, 2008). Conclusively, invasive earthworms make way for invasive
114 plants.

115 A number of studies have examined the effect of earthworms on C and N respiration from soils.
116 Examination of anecic earthworm *L. terrestris* found increased C mineralization in casts and burrow soil
117 compared to bulk soils (Görres et. al, 1997). This effect was also seen in conjunction with endogeic
118 earthworms where increased C respiration was maintained (Whalen, 2008). Changes in soil structure
119 (i.e. porosity) can have an effect on aeration and microenvironments for other organisms (Gorres and
120 Amador, 2010). Consistent with results seen here, increased soil respiration may be attributed to
121 enhanced activity of soil community due to earthworm effects on increasing available nutrients through
122 organic matter integration to mineral soil. Increased aeration of soil may lead to aerobic respiration as it
123 proceeds more efficiently, shifting resource equilibrium point.

124 System total C results hint at consistency with other studies. An ecosystem study by Bohlen et
125 al., found that total carbon pools were reduced by earthworm invasion. Though not seen here, the
126 increased carbon loss from the system may have been significant if the study was carried out for a
127 longer period of time. As well, C:N ratio decreased , which can have a significant effect on biota (Bohlen
128 2004). Though not shown above, C:N ratio was lower in the earthworm treatments, supporting the
129 current observation that earthworm engineered systems vary in this regard.

130 Inconsistent results revolve around N fractions. Though total system N was found to be less
131 here, an ecosystem study found increased biomass C and N, suggesting an ecosystem may find a new
132 equilibrium point with earthworm invasion (Groffman 2004). Alternatively, active biota could be
133 immobilizing N as biomass, due to the increased microbial activity. This would fit with the observation

134 that total system N may be decreased at a lesser rate and support the conclusion that C:N ratios are
135 decreased in earthworm invaded systems.


136 Conclusion

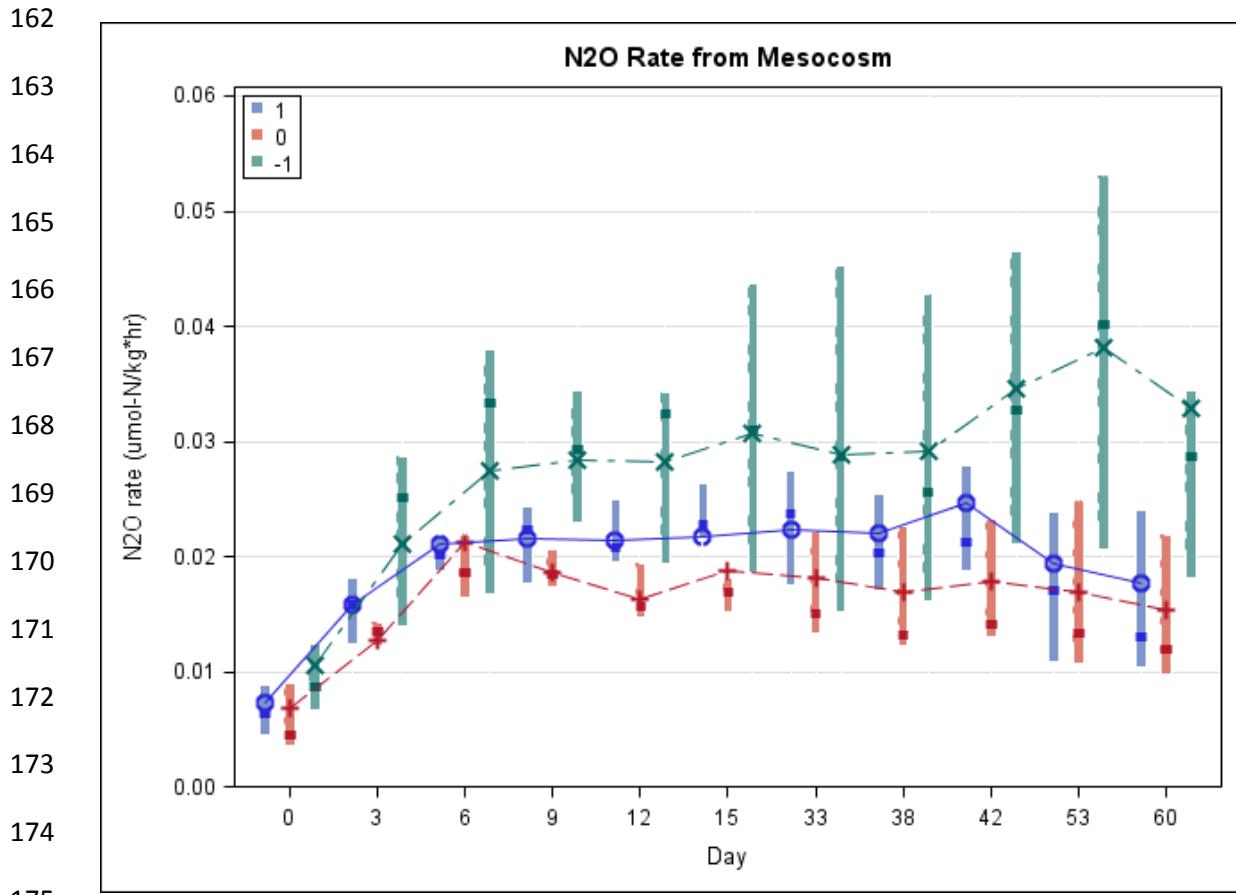
137 Earthworm invasion into forest ecosystems can lend to destabilization of the system and may
138 have profound effects on soils and forests in general to buffer/sequester C and N. Increases in potent
139 greenhouse gas emission from invaded soils raise concern for current climatic models. But while
140 mesocosm studies are good at laying groundwork for further studies, up scaling will be necessary to
141 determine in these results are applicable to full scale systems.

142 Figure 1: Average CO₂ flux rate from mesocosm. Results shown are for earthworm effect, where L.
143 rubellus (1), Control (0) and A. agrestis (-1). Bars indicates quartile, n=10.

144

CO₂ Rate from Mesocosm

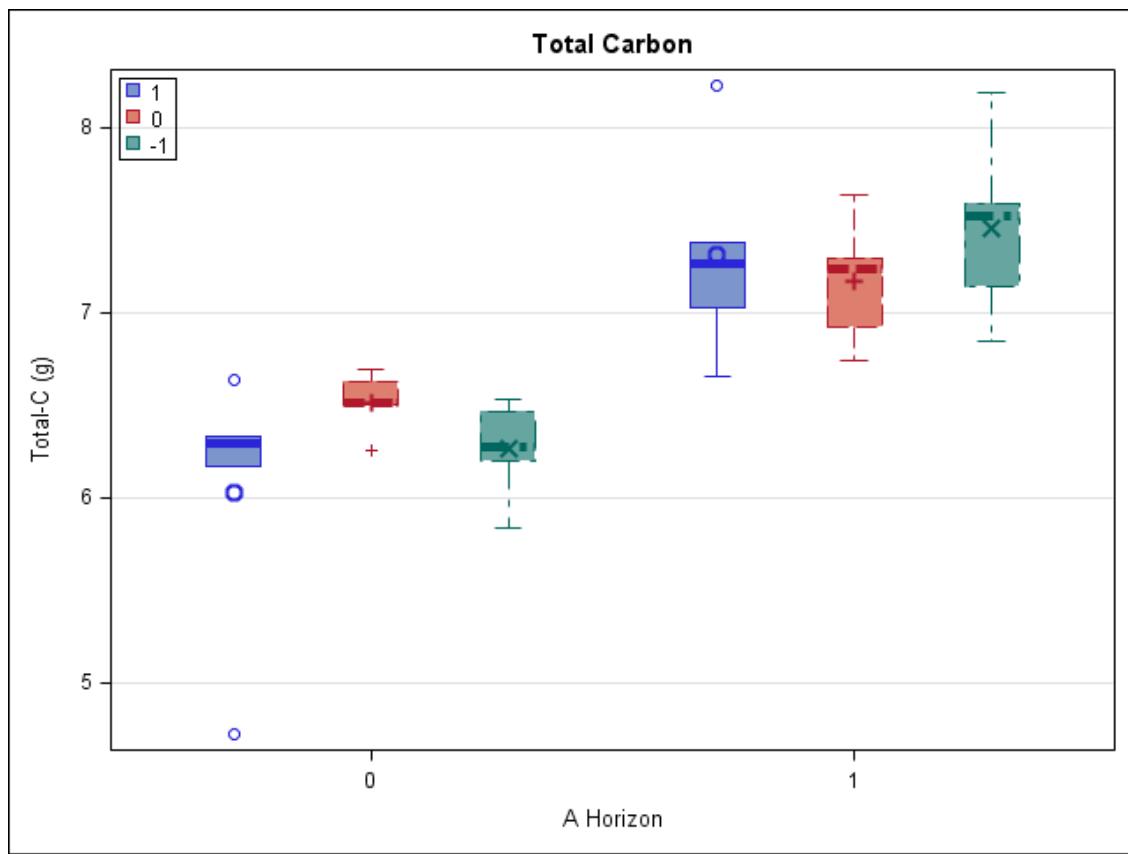
156


157 Table 1: Mesocosm CO₂ ANOVA table

Effect	Num DF	Den DF	F Value	Pr > F
A-horizon	1	24.1	2.86	0.1037
Earthworm	2	24.1	21.74	<.0001
A-hor*Earthworm	2	24.1	0.46	0.6365
Time	10	233	49.89	<.0001
Time*A-hor	10	233	2.60	0.0052
Time*Earthworm	20	233	5.45	<.0001
Time*A-hor*Worm	20	233	0.66	0.8643

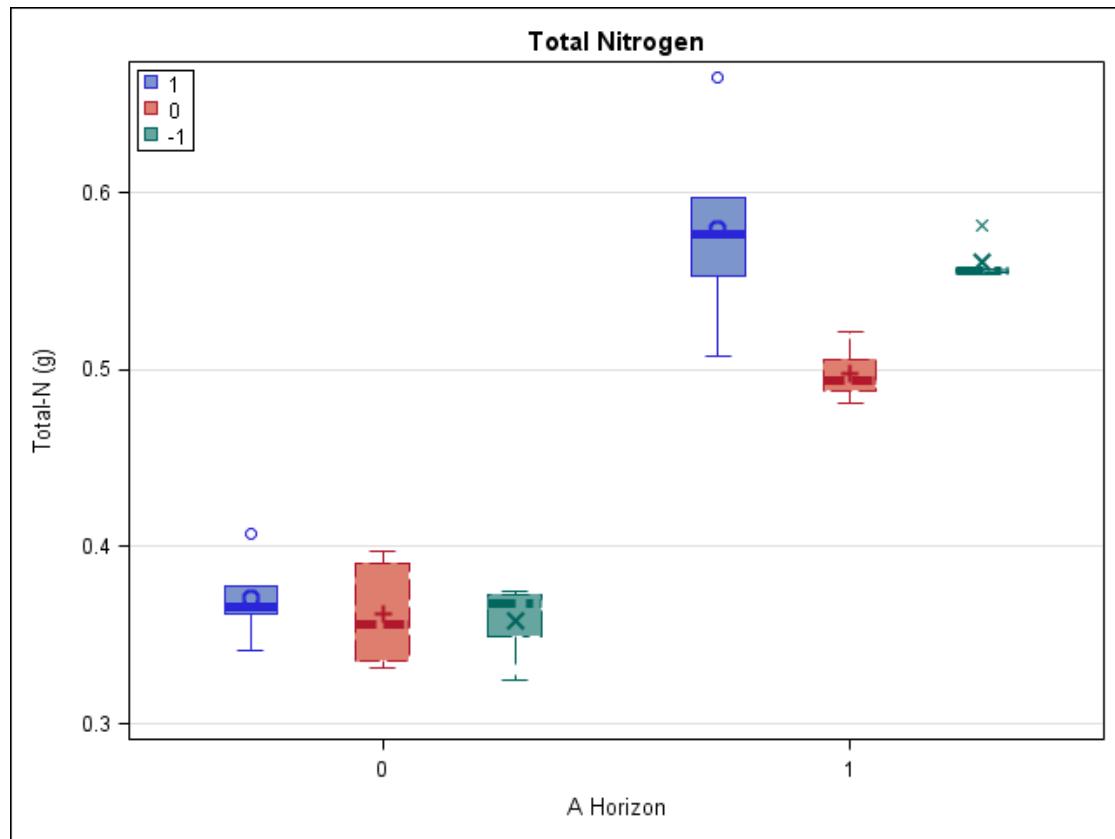
158

159


160 Figure 2: Average N_2O flux rate from mesocosm. Results shown are for earthworm effect, where *L.*
161 *rubellus* (1), Control (0) and *A. agrestis* (-1). Bars indicates quartile, n=10.

176 Table 2: Mesocosm N_2O ANOVA table

Effect	Num DF	Den DF	F Value	Pr > F
A-horizon	1	24.1	0.14	0.7120
Earthworm	2	24.1	5.20	0.0132
A-hor*Earthworm	2	24.1	0.27	0.7688
Time	10	228	10.70	<.0001
Time*A-hor	10	228	1.79	0.0643
Time*Earthworm	20	228	1.29	0.1852
Time*A-hor*Worm	20	228	1.39	0.1273


178 Figure 3: Total mesocosm C. Treatments are *L. rubellus* (1), Control (0) and *A. agrestis* (-1). Bars
179 indicates quartile, n=5.

194 Table 3: ANOVA total C

Effect	NumDF	DenDF	F Value	Pr> F
A-horizon	1	24.1	35.1423	<.0001
Earthworm	2	24.1	0.4747	0.6278
A-hor*Worm	2	24.1	1.2665	0.3000

201 Figure 4: Total Mesocosm N. Treatments are *L. rubellus* (1), Control (0) and *A. agrestis* (-1). Bars
202 indicates quartile, n=5.

217 Table 4: ANOVA total N

Effect	Num DF	DenDF	F Ratio	Pr > F
A-horizon	1	24.1	283.5438	<.0001
Earthworm	2	24.1	4.3792	0.0239
A-hor*Worm	2	24.1	3.1036	0.0633

224 **References**

225 Bohlen, P. J., Scheu, S., Hale, C. M., McLean, M. A., Migge, S., Groffman, P. M., & Parkinson, D. (2004).
226 Non-native invasive earthworms as agents of change in northern temperate forests. *Frontiers in Ecology*
227 and the Environment

228 Görres, J. H., & Melnichuk, R. D. S. (2012). Asian Invasive Earthworms of the Genus *Amyntas* Kinberg in
229 Vermont. *Northeastern Naturalist*, 19(2), 313-322. doi: 10.1656/045.019.0212

230

231 More to follow...