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Abstract  (max 250 wds.)   14 

We present an application of a clustering method for delineating distinct functional zones 15 

for subsurface environmental investigations.  The method is data-driven and based on an 16 

existing Artificial Neural Network (specifically, a Kohonen Self-Organizing-Map 17 

(SOM)) that performs cluster analysis. A non-parametric MANOVA optimizes the 18 

number of clusters used for interpretation.  19 

 20 

This methodology is applied to a set of microbial data collected from 25 groundwater 21 

wells to test the hypothesis that microbial community structure can distinguish between 22 

different regions of contamination within a plume. The algorithm successfully 23 

distinguished a gradient from clean to contaminated sampling locations using the 24 

microbial community structure.  At a small number of clusters (2) the method can 25 

distinguish between clean and contaminated water.  Increasing the number of clusters 26 

creates groups along a gradient of contamination.  Optimizing the number of clusters 27 

using a non-parametric MANOVA suggests a number of clusters for interpretation.  The 28 

landfill leachate application suggests that microbial communities of may be used to 29 



 2 

delineate spatial zones of contamination and the technique could be further developed to 30 

support long-term monitoring of contaminated sites.  31 

 32 
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 34 

Introduction 35 

Microorganisms have adapted metabolic survival strategies to thrive in extreme 36 

environments.  For example, Deinococcus radiodurans is able to withstand high levels of 37 

radiation through specialized methods of DNA repair (Minton 1994).  And, a number of 38 

acidophilic microorganisms are capable of living at very low pH by actively transporting 39 

hydrogen ions out of the cytoplasm against a concentration gradient (Johnson 1998; 40 

Canfield et al. 2005). Microbial community composition reflects, and adjusts to changes 41 

in, environmental hydrochemistry by virtue of a diverse array of highly adaptable 42 

metabolic strategies.  Microorganisms are capable of breaking down a variety of common 43 

petroleum contaminants (Van Hamme et al. 2003).  Dissimilatory reduction of toxic 44 

heavy metals by microorganisms can both mobilize arsenic (Stolz and Oremland 1999) 45 

and immobilize uranium (Lovley et al. 1991).  The reductive dehalogenating metabolism 46 

of Dehalococcoides ethenogenes has adapted to require anthropogenic chlorinated 47 

solvents such as PCE and its breakdown products for its survival (Maymo-Gatell 1997; 48 

Magnuson 1998).  49 

 50 

Community structure of microorganisms in contaminated areas depends on the array of 51 

organisms capable of living in the particular hydrochemical environments.  In 52 
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uncontaminated water and soils, diverse communities of microorganisms thrive (ref).  In 53 

an extreme environment such as the acid mine drainage of Iron Mountain, CA, microbial 54 

community structure is fairly simple; only a handful of distinct types of organisms have 55 

been documented, all of which were related to known acidophiles specifically adapted to 56 

life at very low pH (Bond et al. 2000).  Common soil and groundwater contamination 57 

may not present such an extreme case; but microbial community structure in an 58 

uncontaminated environment can be altered by introducing contaminants (Grant et al. 59 

2006).  This suggests a dynamic relationship between the ‘extreme-ness’ of the 60 

environment and the complexity of the community structure. Because of the rapid and 61 

multifarious adaptations of microbes for coping with (and sometimes necessitating) 62 

contamination and harsh conditions of all sorts, their community structure could be 63 

valuable for describing the nature and extent of soil and groundwater contamination 64 

given the appropriate computational tools. 65 

 66 

Challenges of Long Term Monitoring 67 

In the case of leaking landfills or other sites with multiple types of contamination, there 68 

are a myriad of contaminants, breakdown products, and complex biogeochemical 69 

interactions, which together are difficult if not impossible to identify.  If site management 70 

is primarily concerned with tracking and delineating the extent of impacted groundwater, 71 

each of these must be monitored.  Long-term monitoring of contaminated groundwater 72 

poses many financial and technical difficulties.  Once any active remediation is 73 

completed many sites are monitored for decades, and it is vital that screening tools are 74 

affordable and accurate. 75 
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 76 

There are numerous variables and data types (e.g. categorical, continuous) associated 77 

with groundwater investigations and these variables are generally autocorrelated in space 78 

and time, violating assumptions of parametric statistical tests.  Often environmental 79 

managers wish to group sample locations with similar hydrochemical features. Also, the 80 

optimal number, composition and interpretation of these groups are unknown at the 81 

outset. Clustering methods are particularly attractive for these types of exploratory data 82 

analyses because they do not require many (if any) assumptions about the data, either the 83 

target number of groupings or the structure of the data at the outset.  They are useful tools 84 

for exploring interrelationships among the data to make initial evaluation of the overall 85 

organization (Jain et al. 1996).  Non-linear methods have been shown to account for more 86 

data variability than linear methods when applied to geochemical and microbiological 87 

datasets (Schryver et al. 2006).  In particular, artificial neural network (ANN) clustering 88 

methods have been shown be more robust than traditional methods for clustering 89 

hydrochemical contamination data (Gagne and Blaise 1997, Solidoro et al. 2007).    90 

 91 

The Self-Organizing Map as an Environmental Monitoring Tool 92 

Artificial neural networks (ANNs) are data-driven, non-linear data-mining tools roughly 93 

based on hypothesized mechanisms of human learning.  As a tool for mining 94 

hydrochemical and microbial data, ANNs can exploit complex functional relationships 95 

within a dataset without explicitly defining them, as is the goal with physics-based 96 

modeling approaches.  The Self Organizing Map (SOM), or Kohonen Map, a type of 97 

ANN, was developed in the 1980’s by Teuvo Kohonen, a Finnish researcher of self-98 
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organization,  associative memories, neural networks, and pattern recognition (Kohonen 99 

1983, Kohonen 1990).  The neurobiological basis for the SOM originates from models of 100 

sensory (e.g. auditory, visual, tactile) information processing believed to create 101 

topological mappings on the cerebral cortex (Haykin 1999).  The SOM creates a 102 

topological map of input patterns by competitive (unsupervised) learning (Haykin 1999) 103 

and can be used as a non-linear version of a principal components analysis (Ritter 1995) 104 

and a non-parametric clustering method (ref).  The algorithm has been used in a broad 105 

spectrum of applications from document searching (Kohonen et al. 2000; Lagus et al. 106 

2003) to secondary protein structure rendering (Andrade et al. 1993), to pattern 107 

classification (Marabini and Carazo 1994) to clustering patterns of gene expression 108 

(Tamayo et al. 1999).  The SOM has also been used successfully in a variety of water 109 

quality applications, including distinguishing between waters of varying trophic status 110 

based on hydrochemical measurements (Aguilera 2001), and to distinguish between clean 111 

and polluted portions of a river based on bacterial and macroinverterbrate communities 112 

(Kim et al. 2007). 113 

 114 

As a clustering algorithm, the self-organizing map (SOM) is non-linear and non-115 

parametric.  It outperforms many traditional clustering methods (e.g. hierarchical and K-116 

means) on datasets with high dispersion, outliers, irrelevant variables and non-uniform 117 

cluster densities (Mangiameli et al. 1996).  Extracting different numbers of clusters from 118 

an SOM can capture multiple meanings of groupings within a dataset.  For example, in a 119 

study of a polluted river Kim et al. (2008) found a small number of clusters separated 120 

different levels of contamination, while a larger number of clusters separated the dataset 121 
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based on seasonal biogeochemical differences.  Park et al. (2004) found different 122 

meanings at successive hierarchical levels clustering the topology of an SOM mapping 123 

benthic macroinverterbrate populations in streams with a range of land use impacts.   124 

 125 

Clustering methods as a statistical tool do not assign significance to the clusters they 126 

generate or optimize the number of clusters generated.   In general, we seek a method to 127 

maximize variability between clusters and minimize variability within clusters.  Several 128 

authors have used a parametric MANOVA (Reyjol et al. 2005; Park et al 2006) to 129 

determine significance of the clusters generated from an SOM. Other methods of 130 

optimizing the number of clusters in a data set are also based on maximizing the ratio of 131 

the between and within cluster sums of squares (Milligan and Cooper 19XX; Calinski 132 

and Harabasz 19XX) including the gap statistic (Tibisrani et al. 2001) and the DB index 133 

(Davies and Bouldin 1997).  134 

 135 

The goal of this research is to develop a method for exploratory data analysis that clusters 136 

data based on microbial community composition.  There are three specific objectives.  137 

First, we use a non-parametric MANOVA in tandem with an SOM to optimize the 138 

number of clusters created by the algorithm.  This will work toward creating a repeatable, 139 

objective way to evaluate between potential sets of groupings.  Second, we apply the 140 

technique to a complex spatial dataset of microbial communities and geochemistry from 141 

the Schuyler Falls landfill as a proof of concept. Third, we speculate about the meaning 142 

of the clusters and discuss scientifically plausibility.  Since this is an exploratory method 143 

for mining data, not a hypothesis test, there is no correct answer, though results will 144 
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ideally guide researchers toward more efficient and effective sampling designs for future 145 

monitoring or experiments.  146 

 147 

Methods 148 

Field Data Collection & Microbiological Analytical Methods 149 

The field data collection site is the Schuyler Falls landfill, an unlined municipal landfill 150 

in Schuyler Falls, NY, USA. Detailed site information can be found in Mouser 2006 151 

(Dissertation) and in documents from the State of NY (refs).  The closed and capped 152 

landfill is situated near the Saranac River (Figure 1a).  Leachate has leaked from the 153 

landfill and penetrated nearby groundwater.  Water quality is monitored quarterly via an 154 

array of monitoring wells in the vicinity of the landfill.  This regular monitoring analyzes 155 

for approximately 10 different heavy metals and over 30 individual organic compounds 156 

(ref).  Sampling locations and the approximate extent of contamination visible in Figure 157 

1b, show significant migration in the direction of groundwater flow, toward the Saranac 158 

River.  The relative overall extent of contamination at this multi-contaminant site is 159 

represented as specific conductivity, which correlates well with several of the major 160 

contaminants found at the site (Mouser 2006).  161 

 162 

Samples for the microbiological analysis were collected by bailing monitoring wells in 163 

March 2005 (Mouser et al. in progress).  Microbiological analytical methods are detailed 164 

in Mouser et al. (in progress).  Briefly, DNA was isolated from water samples and 3 165 

different primers were used to amplify regions of DNA specific to Archaea, Bacteria and 166 

Geobacteracea via the polymerase chain reaction (PCR) (Mullis XXXX).  Through a T-167 
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RFLP analysis and data post-processing, the communities were described by Mouser et 168 

al. (in progress) as relative abundance of operational taxonomic units for each of the three 169 

chosen taxonomic targets.  Principal components of the array of relative abundances were 170 

used as input to the computational methods presented where 75% of the variance of each 171 

set was accounted for by the first 2, 3, and 3 principal components of the Bacteria, 172 

Archaea, and Geobacteracea data, respectively.  These 8 metrics for each monitoring well 173 

combined to form input patterns for the computational method.  The complete dataset is 174 

available for 25 monitoring wells at the site. 175 

 176 

Computational Methods 177 

The basis of our method is the SOM, a 1-layer (of weights) network based on a 2-178 

dimensional rectangular grid of output nodes (Figure 2).  SOM Network architecture is 179 

described briefly here and in detail elsewhere (Kohonen XXXX ; Haykin XXXX). All 180 

computational methods were implemented by the author using MATLAB (version 7.4).   181 

SOM input nodes are fully connected to the output nodes by bundles of synaptic weights.  182 

The number of input nodes is defined as the number of parameters in the input patterns. 183 

Values of each input parameter are standardized between 0 and 1 as: 184 

! 

x
norm

= x "min(x)( ) max(x) "min(x)( ) 185 

allowing for the variation in each parameter to be considered equally by the ANN 186 

algorithm.  187 

 188 

Unsupervised training begins by individually calculating the distance between the 189 

parameters of an input pattern to the bundle of synaptic weights connected to each node 190 
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on the 2-dimensional map.  For this application we use Euclidian distance, though other 191 

distance measures could be used.  The node on the 2-dimensional map closest (minimum 192 

Euclidian distance) to the input pattern is chosen as the best match.  A neighborhood of 193 

nodes in the 2-dimensional map is selected and all weights of the best matching node and 194 

nodes in the surrounding neighborhood are updated according to the rule: 195 

 196 

where α is a learning parameter with range (0, 1) 197 

           wijk is the weight at node (i,j) for variable k 198 

 and  pattern(k) is the kth variable of the current input pattern 199 

 200 

One training iteration is complete after each input pattern has been presented to the 201 

network once and the appropriate weights are updated.  Every iteration input patterns are 202 

presented in a new random order.  As an unsupervised method, SOM network training is 203 

executed for a predetermined number of iterations.  In this application the network trains 204 

in two phases, an ordering phase and a fine-tuning phase.  The neighborhood radius 205 

(around the best matching node) and learning parameter decrease exponentially during 206 

the ordering phase and linearly during the fine-tuning phase with more iterations in the 207 

fine tuning phase than the ordering phase (Haykin 1999). 208 

 209 

A method for choosing the optimal size of an SOM map considers quantitative error (qe), 210 

calculated as the mean distance between training patterns and their final best matching 211 

units (Kohonen 1991), and topographic error (te), the percentage of training patterns for 212 

! 

w(i, j)new
k = w(i, j)old

k +" pattern(k) # wold

k( )
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which the best matching unit and the second best matching unit are not adjacent (Kiviluto 213 

1996). Minimizing these two metrics can optimize the map size which best captures the 214 

topology of the dataset in 2-dimensions.   However, as map size increases these two 215 

metrics both approach zero and as map size becomes much larger than the number of 216 

input training patterns they lose any value. As map size increases quantization error can 217 

decrease toward zero because map nodes can learn individual input patterns.  The 218 

topographic error will decrease toward zero as map size increases because unused nodes 219 

will surround the pattern they trained from and eventually the second best match will 220 

always be adjacent.  For the small number of input patterns available in this application 221 

(25), using the qe and te metrics isn’t a satisfactory way to optimize map size.  From a 222 

survey of the ecological studies cited in this manuscript, the ratio of sample size, n to map 223 

size ranges from approximately 1 to 10.  We will use choose measures of cluster 224 

significance determine the optimal map size rather than these map specific metrics.   225 

 226 

Visualizing the final weights or output of the SOM algorithm can take several forms.  In 227 

this application our number of input patterns is relatively small, n = 25.  While a small 228 

number of map nodes (i.e. 2 - 10) can directly cluster the data, a larger number of nodes 229 

can illustrate the overall organization of the input patterns.   Examining a unified distance 230 

matrix, or U-matrix, of SOM output is a convenient way to visualize the 2-dimensional 231 

organization of the data.  A U-matrix is the average Euclidian distance between each 232 

node of the map and its immediate neighbors (reference) creating topographic divides 233 

between regions of dissimilar data.   234 

 235 
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To compare relevance between the different numbers of clusters generated, we calculated 236 

the F-statistic from a non-parametric MANOVA suitable for unbalanced designs 237 

(Anderson 2001; McArdle and Anderson 2001; Jones 2003).    In the generic form this 238 

method allows for the use of any type of distance metric to define the difference between 239 

samples, and is appropriate to use with non-parametric microbial community datasets.  240 

For the landfill application, final best matching units for each input pattern as determined 241 

by the SOM algorithm represented group membership.  A Euclidian distance matrix 242 

created from the input patterns, and group membership of each pattern are input to the 243 

MANOVA.  244 

 245 

Results and Discussion 246 

The SOM U-matrix using the Schuyler Falls Landfill microbial data shows a separation 247 

of clean and contaminated monitoring locations in the 2-dimensional data space (Figure 248 

3).   The white ‘ridges’ separate regions of similarity (dark valleys) on the map.  The 249 

most striking map feature is the cluster of clean sampling locations (C) in the upper right 250 

hand corner in the contiguous dark valley, implying that these points were fairly 251 

homogeneous.  The remainder of the map is somewhat more difficult to interpret since 252 

there are sharp gradients between many neighboring patterns. Samples collected from 253 

three polluted wells (P) are mapped to a region on the left hand side and samples with 254 

small but detectable contamination (F) spread out over the remaining area.  The isolation 255 

of single points within the contours of the U-matrix indicates that community structure is 256 

more similar in clean wells than in contaminated wells.   It also suggests that the number 257 

of nodes used to generate this map is over-fitting the data.  This was anticipated given the 258 
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sample of 25 wells and 80 nodes.  Regardless, it is still useful for observing the overall 2-259 

dimensional mapping of this data set.  260 

 261 

This research focuses on using the SOM as a clustering method.  Therefore we determine 262 

cluster membership with the SOM for each input pattern, as well the F-statistic for 9 263 

different sized SOMs, from 2 to 10 nodes (Table 1). The F-statistic is the ratio of the 264 

between and within group mean square error, increasing as groupings become more 265 

meaningful. Maximizing this F-statistic should indicate the optimal number of clusters 266 

for the given dataset. The clusters generated by the algorithm for 8 and 10 nodes are 267 

identical.  We do not want to consider an increasing the number of clusters due to 268 

concerns of over-fitting the data.  With such a small number of data points to be clustered 269 

we need to be aware that as the number of points within each cluster shrinks our within 270 

cluster variability will continue to shrink and our between cluster variability will continue 271 

to grow, falsely implying greater significance.  We suggest that 4 clusters may be 272 

significant.  The calculated value of the F-statistic plateaus between 4 and 7 clusters (17.1 273 

and 18.8) then increases substantially again at 8 clusters to 24. 274 

 275 

It is ultimately the spatial location of the clusters in Table 1 that reveal how well this 276 

method can delineate regions of contamination.  Numbers (for 2, 3 and 4 clusters) 277 

superimposed on a site map showing the generalized extent of the plume (Figures 4a, 4b, 278 

and 4c) illustrate the spatial continuity of the clusters.  Since the clusters were generated 279 

using only microbial abundance data, it is remarkable how well the clusters reflect the 280 

gradient of contamination at the site.   281 
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 282 

Since the relative abundance of different microorganisms is so closely tied to favorable 283 

metabolic pathways in a particular hydrochemical environment, we can speculate that the 284 

cluster divisions are related to the most available carbon sources and electron acceptors.  285 

Performing the same analysis separately for the three sub-groups of microorganisms 286 

reveal that Bacteria and its subset Geobacter are more adept at categorizing the relative 287 

level of contamination at this site than the community of Archaea.  Thought they are 288 

detected throughout the site, many Archaea are adapted to particularly extreme 289 

environments and as a result, we might expect them to be most prolific in a methanogenic 290 

region of a contaminant plume (reference).  Including only the Bacteria and Geobacter 291 

data as input to the SOM algorithm does change the spatial distribution of the clusters 292 

(Figure 4d). The SOM performs better when irrelevant variables are removed from the 293 

input dataset (Mangiameli et al. 1996), so our analysis may benefit from removing 294 

Archaea from the input.  Future analysis of similarly contaminated sites might benefit 295 

from focusing on other subsets of organisms within specific regions of the bacterial 296 

domain.  For example, Geobacter are known to reduce heavy metals and may be 297 

particularly effective indicators for specific types of contamination (Lovley 19XX).  Even 298 

though we will likely never find a one to one mapping between contaminants and 299 

microorganisms, communities of microorganisms can be good indicators of gradients in 300 

electron acceptor and nutrient availability.   301 

 302 

At a variety of levels of clustering, MW219 (Table 1) consistently clusters separately 303 

from the uncontaminated sampling locations, implying that the microbial communities 304 
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share more in common with the contaminated wells than the clean wells.  Although 305 

significant contamination was not detected by hydrochemical monitoring at MW 219, 306 

there may be fingering extending southeast toward MW 218 and 219.  Profiles thorough a 307 

contaminant plume can show differences in microbial metabolic activity related to 308 

contaminant concentration, suggesting degradation may occur more rapidly in the fringes 309 

of a plume rather than in the most concentrated area (Pickup et al. 2001; Windrel et al. 310 

2008).   Perhaps MW219 is in an area where the community of microorganisms has 311 

changed due to the introduction of low levels of contamination and is an advanced 312 

indictor of migrating pollution. 313 

 314 

Conclusions and Implications 315 

Geochemical gradients and transformations in the environment are intricately coupled to 316 

microbial communities and their metabolic processes, yet it is virtually impossible to 317 

explicitly describe one as a function of the other based on mechanistic or predictive 318 

models.  We demonstrate that non-linear methods such as the self-organizing map 319 

artificial neural network are effective at distinguishing between different communities of 320 

microorganisms and suggesting the spatial extent of functional zones of a plume.  This 321 

research is a first step toward using microorganisms to delineate spatial patterns of 322 

subsurface contamination.  Additional work in the area could be useful for site 323 

characterization and long-term monitoring.   324 
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 334 

Figure Captions  335 

Figure 1: Schuyler Falls Landfill, 1a) Site location map 1b) Landfill site plan with extent 336 

of contamination (electrical conductivity). Figure from Mouser 2009 (in progress) 337 

 338 

Figure 2: Architecture of the self-organizing map.   Input patterns are presented to the 339 

network one at a time for training, and w(i,j)1 through w(i,j)K compose the bundle of 340 

synaptic weights associated with map node (i,j) connecting it to the K features of each 341 

input pattern. 342 

 343 

 344 

Figure 3: Unified distance Matrix of the SOM output created from an 80-node (8 by 10) 345 

map using Archaea, Bacteria and Geobacter community data.  Locations of the colored 346 

letters show the best matching nodes for the 25 monitoring wells.  The colors and letters 347 

correspond with three approximate classes of contamination at that monitoring location 348 

determined by Mouser et al (in progress): clean, fringe and polluted. 349 
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 350 

Figure 4: Spatial locations of SOM generated clusters using Archaea, Bacteria, and 351 

Geobacter as input superimposed on the site map using a) 2 clusters, b) 3 clusters and c) 4 352 

clusters.  d) Spatial locations of SOM generated clusters using only Bacteria and 353 

Geobacter community data.  354 

 355 

Figures  356 

 357 

Figure 1 358 
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 359 

Figure 2 360 

 361 

Figure 3 362 
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 363 

Figure 4 – I know this is clunky-don’t yet have the data to reproduce background.  364 

 365 

Table Captions (Table will also be presented in-line in the manuscript text)  366 

Table 1 – Results of the SOM clustering using microbial data describing the Archaea, 367 

Bacteria and Geobacteracea communities for 2 through 10 clusters.   368 
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Tables 369 

Table1370 

 371 




