Award Highlights January 2019

 

Mass Mutual and UVM Expand Groundbreaking Data Science Partnership

Expanding its relationship with the University of Vermont's (UVM) Complex Systems Center, Massachusetts Mutual Life Insurance Company (MassMutual) announced today that it is providing $5 million in funding to further advance study and research in the field of data science and analytics.

MassMutual Center of Excellence for Complex Systems and Data Science
The funding, to be provided over five years beginning in 2019, will include the establishment of the MassMutual Center of Excellence for Complex Systems and Data Science, which will initiate research projects and programs aimed at better understanding human wellness through data analytics, as well as programming to cultivate a strong pipeline of data science talent.

Read more here.

 

MRI: Acquisition of a Variable-Pressure, Field-Emission Scanning Electron Microscope for Materials Research and Education

Source of Support: National Science Foundation (Award # 1828371)

PI: Matthew White (Physics), co-PIs: Randall Headrick (Physics), Christopher Landry (Chemistry), Frederic Sansoz (Mechanical Engineering), Laura Webb (Geology)

Total Award Amount: $480,000 (all direct cost, no indirect)

Total Award Period Covered: 10/01/2018 – 09/30/2021

Faculty members from four academic departments (Chemistry, Mechanical Engineering, Geology, and Physics) at UVM have been awarded a Major Research Instrumentation (MRI) grant from the National Science Foundation for the acquisition of a 30 kV Zeiss Sigma 300 VP Field-Emission Scanning Electron Microscope (FE-SEM), which will be installed in Spring 2019 in a new shared microscopy facility of the Discovery STEM building. The instrument features both a variable pressure mode and in-column deceleration to provide best-in-class low voltage operation down to 20V and 1.2-nm resolution at 20kV. The instrument includes state-of-the-art electron diffraction detectors and software that enable grain orientation mapping and merging of chemical and crystallographic orientation maps at microscopic scale (see figure).


The equipment will enable ongoing, potentially high-impact research in several areas: (i) Chemistry of materials, including studies of nanoporous and nanocrystalline structures for catalysis and biomedical materials. (ii) Studies of defect-property relationships in organic semiconductor thin films relevant to improved organic electronic and hybrid organic-inorganic photovoltaic devices. (iii) Studies of ultrahard metallic nanomaterials, including in-situ mechanical studies of microstructure evolution under deformation relevant to energy materials. (iv) Studies in geology and earth sciences aimed at identifying mineral phases and textures with high sensitivity and submicron precision.
 

Electron backscattered diffraction FE-SEM image revealing both microstructure and grain orientation mapping in ice-templated silver

This unit will be the first FE-SEM in the state of Vermont that will be made available to academic and general users and will be incorporated into laboratory exercises for new and existing courses. Hands-on demonstrations and science projects will be made available to the general public and to high school students in rural Vermont and the Adirondack Region of New York. The instrument features a remote operation capability that will allow live SEM demonstrations in the classroom and for presentations at the ECHO Lake Aquarium and Science Center in Burlington, Vt. This remote access feature will become a core demonstration for outreach efforts at local and statewide middle and high schools, where highly visual demonstrations of nanoscience can help promote interest in STEM fields among women and underrepresented minorities. The FE-SEM will also be available to local industrial partners, providing both an imaging service and a focal point for academic industrial collaborations.

 

Alfred P. Sloan Foundation

Josh Bongard

Thanks to a generous gift from the Alfred P. Sloan Foundation, Computer Science faculty member Josh Bongard and his research team will build the world’s first in-browser supercomputer, to be known as #UVMComputes. Most supercomputers are housed on university campuses or in the cloud. #UVMComputes will connect together laptops, smart phones, tablets, and any other internet-enabled device whose browser is pointed to the #UVMComputes web address. Once connected, devices will start crunching numbers for faculty and students on campus who need computer horsepower for anything from homework assignments to federally-sponsored research projects.

“We’re building #UVMComputes as a new way to connect students, faculty, staff and alumni,” said Bongard. “Many students are looking for ways to get involved in research on campus, and #UVMComputes will be a new and easy way to do so.” He added that #UVMComputes will enable alumni to give back to their alma mater simply by connecting to #UVMComputes with their devices. The Sloan Foundation is a charitable foundation that invests in projects that enable the public to participate more easily in science and engineering. Funding for the project began in the summer, with #UVMComputes likely to come online in early 2020.

 

UVM Receives $1.25 Million DOT Award to Help Form Transportation Infrastructure Durability Center

The University of Vermont, in collaboration with the University of Maine and others, will create a highly competitive University Transportation Center (UTC) called the Transportation Infrastructure Durability Center (TIDC). TIDC aims to help save taxpayer dollars by extending the life of our transportation assets, including bridges, roads and rail.

A bride in Richmond, VT

The U.S. Department of Transportation will provide as much as $14.2 million over five years for this University of Maine-led coalition, which includes the University of Vermont, University of Rhode Island, University of Connecticut, University of Massachusetts Lowell and Western New England University.

Read more here.

 

Computational and Experimental Study of UHTCs for Thermal Protection of Hypersonic Vehicles

Douglas Fletcher

Hypersonic vehicles fly faster than Mach 5 and they must manage the high levels of heat transfer that they experience on their external surfaces. When the very high-speed flow is brought to rest at a vehicle surface, the vehicle’s kinetic energy is converted into thermal and chemical energy at very high temperatures. The strong temperature gradient at the surface then leads to significant heat conduction into the vehicle.  A new class of materials, Ultra-High Temperature Ceramics (UHTCs), are being developed to protect hypersonic vehicles from the aero-heating while also maintaining a stable surface geometry that is needed for control and maneuvering.

The University of Vermont (UVM) is partnering with the University of Michigan (UM) to develop a reliable numerical model of the interaction of these new materials with the high-temperature plasma conditions expected for hypersonic flight applications.  The computational framework and numerical models will be developed at UM, and this effort will be informed and guided by experiments performed by UVM in the 30 kW Inductively Coupled Plasma (ICP) Torch Facility.  Different UHTC materials will be subjected to different plasma gases at temperatures approaching 7500 K in the ICP torch facility to elucidate the key reactions that limit material performance.  Details of the critical gas-surface reactions will be quantified by laser-spectroscopic measurements of the reactive species and surface reaction products, and these measurements will enable validation of the numerical model.

This two-year research effort is funded by the Office of Naval Research (Dr. Eric Marrineau, Technical Monitor).

 

Translational Research to Prevent and Control Global Infectious Diseases

Hebert-Dufresne

The project, "Network epidemiology and the quantification of behavioral interventions," directed by Dr. Laurent Hébert-Dufresne, focuses on understanding how behavioral factors determine the spread of emerging infectious diseases. Indeed, the dynamics of new outbreaks are shaped not only by the biology of the virus, but also in large part by societal and behavioral factors. Both factors are highly unpredictable and variable, as evidenced, for example, by contact tracing data from the West African Ebola outbreak that suggest only a few percent of Ebola cases caused more than one secondary infection, yet some individuals infected dozens of others. The network epidemiology project therefore proposes to develop a framework based on network science --- which embraces behavioral heterogeneity --- and on qualitative data collected from community engagement efforts. Altogether, the goal is to develop community-specific probabilistic forecasts available before an outbreak even enters a community.

 

Appala Raju Badireddy and the Village of Essex Junction Receives Phase 2 Funding from Vermont's Phosphorous Innovation Challenge

Village of Essex Junction, Chittenden County Solid Waste District and UVM – Essex Junction, VT – $45,000.00

Use of proprietary pipe descaling technology (PDT) to effectively remove phosphorus in Vermont sized wastewater applications. The technology uses an induced electric field of variable amplitude and frequency that can promote precipitation of crystalline minerals (struvite) without the dangerous and damaging adhesion to pipes, pumps or in-tanks. The PDT coupled with an electric-filtration cell will be employed to enhance phosphorus capture.

 

More Highlights January 2019

College Department Principal Investigator Co-PI an/or Key w/F&A Split Sponsor Awarded Total
COM Psychiatry Garavan Dodds NIH 243,546
CEMS Computer Science Herbert-Dufresne   NSF 122,120
CEMS Mechanical Fletcher, Douglas   U Michigan/ONR 449,844
CEMS Mechanical Huston Xia US Army 99,076
CEMS Mechanical Oldinski   NIH 386,261
CAS Physics White Sansoz NSF 529,782
CEMS TRC Dowds, Jon   UQAM/SSHRC 6,481
CEMS Civil & Environmental Dewoolkar   UMaine/USDOT UTC 250,000
CEMS Electrical & Biomedical Duffaut-Espinosa   NSF 149,879
CEMS TRC Dowds, Jon   VAoT/FHWA 29,867
CEMS Computer Science Lee, Byung Xia VAoT/FHWA 87165
CEMS Civil & Environmental Porter, Doug     49,255
CEMS Civil & Environmental Dewoolkar Rizzo, Wemple, Bomblies VAoT/FHWA 149,756
CEMS Mechanical Schadler   RPI/DOE 20,000
CEMS Computer Science Bongard   Yale U/NSF 119,998
COM MMG Kirkpatrick Hebert-Dufresne NIH 2,603,461
CEMS Math & Stats Vincent   The Face Foundation/T. Jefferson's Fund 10,000
CEMS TRC Sullivan Dowds VAoT/USDOT 80,000
CEMS Computer Science Bongard   Army Research Office 60,000
CAS Geology Pedrial Rizzo NSF 29,727
CEMS Math & Stats Buzas Edwards Vermont Oxford Network 153,379
CEMS Computer Science Near   UC Berkeley/DARPA 93,400
CEMS Math & Stats Yang   AFOSR 122,194
CEMS Mechanical Dubief   US Israel Binational Science Foundation 24,750