

Stream Geomorphology

Leslie A. Morrissey UVM July 25, 2012

What Functions do Healthy Streams Provide?

- Flood mitigation
- Water supply
- Water quality
- Sediment storage and transport
- Habitat
- Recreation
- Transportation
- Aesthetic qualities

When streams go wild

In Vermont, most flood damage is caused by fluvial erosion

A. A. A.

History of River Management

- Transportation
- Power
- Agriculture

(014-8776-8×11-12-27-105A×12-3000) EAST OF MIDDLESEX, VI.

How DYNAMITE

streamlines streams

Practically every farm in the heavy crop-producing areas of the United States needs some ditching, and there is hardly a stream in the entire boundary of the Union that does not need to be corrected to give better service in discharging the large amounts of waste water from heavy rains, and to protect low lands.

FIG. 54. DIAGRAM OF STREAM TROUBLES THAT MAY BE CORRECTED BY BLASTING

CROOKED STREAMS are a menbordering on their banks. The twisting and turning of the channel retards the flow and reduces the capacity of the stream to handle large volumes of water. Floods result. Crops are ruined. Lives are lost. Banks are undermined, causing cave-ins that steal valuable

acreage.

Traditional River Management

- Goal contain flow within straight channel
- Stream channels were:
 - dredged
 - bermed
 - armored

to withstand the increased stream power

Disaster Can Result

Energy kept in the channel during flooding can cause catastrophic damages downstream

Streams are Indicative of Watershed Condition

A change in the watershed will impact the stream network

Fluvial Geomorphology

Channel characteristics (e.g., sinuosity, width, depth) are determined by stream discharge and sediment

Influenced by:

- Watershed area
- Land use and land cover
- Soils and geology
- Topography
- Climate
- Human impacts

Streams Adjust to Changing Conditions

Stream Corridor Restoration: Principles, Processes, and Practices 1998. Federal Interagency Stream Restoration Working Group.

Lateral Channel Migration

Vertical Movement of Stream Channel

1992 - 2007

Stream Corridor Longitudinal Profile (dominated by slope)

Miller, 1990

Temporal Changes in Stream Channel

Left Bank

Right Bank

Thalweg

Downstream

Stream Channel Patterns

Straight channels ->

- indicative of strong geologic structure (bedrock) or human control
- Braided streams
 - multiple interwoven channels
- \succ Meandering channels \checkmark
 - highly variable, sinuous

Pool and Riffle Sequence

Water is the Driver

Stream Corridor Restoration: Principles, Processes, and Practices. 1998. Federal Interagency Stream Restoration Working Group

Velocity affects erosion and deposition

Shaping and Reshaping of Channels

- > As gradient (slope) decreases, stream flow meanders -> lateral erosion
- Since flow is faster around the outside of a bend, meanders shift sideways by eroding their outer bank
- Since flow is slower on the inner bank, sediment is deposited

Channel Migration Process (Planform Change)

Dynamic Equilibrium

A stable stream transports the water and sediment produced by its watershed, such that over time it maintains its dimension, pattern, and profile, while neither degrading nor aggrading. However, if any factor changes, the other variables must change to reach a new equilibrium.

The amount of sediment and the size of the sediment particles that can be transported in a stream are directly related to the gradient (slope) of the stream channel and amount of water flowing in the stream channel at a particular time.

Storm > 个 Discharge >>> Degradation

Road Construction (assume no change in stream power)

Out of Balance

 When a stream is unstable, i.e. out of balance, it is either aggrading (gaining sediment along its bed and banks) or it is degrading (deepening or widening due to the removal of sediment)

What Can Change Streamflow? (Dynamic equilibrium)

- Vegetative Clearing
 Channelization
 Streambank armoring
 Development
 Bare soil
- ➢Irrigation or drainage
- ➢Overgrazing
- ➢ Roads and railroads
- ➢ Dams
- ➤Water withdrawal

Examples

Culverts Agricultural ditches Channel straightening Rerouting

Constrictions

Stream crossings

- roads
- railroads
- bridges
 Road culverts
 Channelization
 Dams
 Bedrock

Storm events can trigger catastrophic floods

- Baseflow sustained amount of flow in a stream when no precipitation
 event has occurred
- **Peak discharge** stream flow attributed to a precipitation event

Greater runoff and higher in-stream velocities contribute to streambank erosion

Causes of bank erosion

- Lack of riparian buffers
- Channelization
- Dams
- Overgrazing
- Commercial dredging
- Piped discharge
 - (culverts, ditches)
- Development
 - Impervious surfaces

Sediment in Streams and Rivers

- Leading non-point source of pollution
- Largest source of impairment to streams and rivers worldwide (EPA)
- Decreased water quality
- Negatively impacts habitat health

Bank Protection

Armoring moves the problem downstream...

Development increases runoff

- ↑ Impervious surfaces
- ↓ Riparian buffers
- ↑ Stormwater inputs
- ↑ Peak discharge (flooding)
- ↑ Sediment loading

Google Earth Activity

1. Photointerpret stream features along Browns River

- Stream features
 - erosion
 - deposition
- Channel modifications
 - straightening, armoring, ditches, dams
- Channel adjustments