### Satellites, Weather, and Climate Module 19:

### Characteristics of Northeast Winter Snow Storms

Dr. Jay Shafer Dec 8, 2011 Lyndon State College

Jason.Shafer@lyndonstate.edu







# Outline

- Large scale structure of Northeast Snow Storms
  - Surface pressure patterns
  - Moisture patterns
  - Frontal patterns
- Forecasting storms: tools meteorologists used to predict today's snow storm

# Learning Outcomes

- 1. Improve understanding of the typical lifecycle of mid-latitude cyclones
- 2. Improve understanding of the structure of Nor'easters and how they produce heavy snowfall
- Develop a basic understanding of how weather forecast models can be used to predict these events

### Northeast Snow Storm Project

•Identified top 30 snow storms 1977-2007 using area-averaged weighing of daily snow amounts









### **Surface Pressure Patterns**



Photo credit: Alexander Jacques

### Surface low pressure tracks for major NE Snow Storms



### **Storm Development "Cyclogenesis" Climatology**



#### **Principle January Cyclone Tracks**



# Why is the east coast favored for cyclone or low pressure formation?

Juxtaposition of cold air masses and warm temperatures related to Ocean temperatures creates a strong temperature gradient or "frontal zone"

This creates baroclinic instability, which is an instability resulting from a strong temperature gradient; Mother Nature does not like strong temperature gradients, so a midlatitude cyclone develops to even out this gradient and bring warm air north and cold air south.



#### **Average Pressure and Observed 3-HR Precipitation: Hour -18**



#### **Average Pressure and Observed 3-HR Precipitation: Hour -12**



#### **Average Pressure and Observed 3-HR Precipitation: Hour -06**



#### Average Pressure and Observed 3-HR Precipitation: Hour 0



#### Average Pressure and Observed 3-HR Precipitation: Hour +06



#### **Average Pressure and Observed 3-HR Precipitation: Hour +12**



### Moisture Source and Evolution

#### **Average Pressure and Precipitable Water (Inches) Hour: -18**



#### **Average Pressure and Precipitable Water (Inches) Hour: 0**



### **Temperature Pattern**

# Mid Latitude Cyclone Lifecycle

Norwegian Model IV (a) III II T cold cold cold sector warm Isotherms: Lines of Constant Temperature

Mid-latitude cyclones evolve through different phases:

Phase I: East-west stationary frontal zone with warm air south and cold air north strong temperature gradient is present

Phase II: A kink develops on the isotherms (lines of constant temperature) as warm and cold fronts develop and move.

Phase III: Wave on the isotherms amplifies and cold front advances faster than warm front; cyclone is nearing maturity

Phase IV: Occlusion develops as cold front catches up with warm front; this process does not always occur with every cyclone; ridge of warm temperatures extends back toward the low center; storm is weakening







### Upper-level Evolution: Major Interior Northeast Snow Storms



An upper-level disturbance is needed to perturb the Low-level temperature gradient to produce a cyclone; these are usually coherent features traceable days upstream

You can think of the jet stream as producing these features.

### **Vertical Structure**



Ahrens 2006

### Forecasting East Coast Snow Storms

#### Storm Total Snow Forecast

Note: The map above displays the expected <u>average</u> accumulation. Some locations will receive less snow, while others wi more.



### **Snowfall Verification**



### GFS Model Forecast: 39 Hour Forecast Valid 4:00AM Thursday



### NAM Model Forecast: 39 Hour Forecast Valid 4:00AM Thursday



Assessing Forecast Uncertainty





![](_page_37_Figure_0.jpeg)

![](_page_38_Figure_0.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

### **Precipitation Verification**

![](_page_42_Figure_1.jpeg)

# Activity

- Plot the surface low position every 3 hrs over the last day for today's storm
  - How did the track of the storm compare to other snow storms?
- Annotate the surface low strength in (mb) to each low position
  - Was the surface low intensifying, decaying, or remaining the same strength as it passed the Northeast?
- Compare frontal development to the typical midlatitude cyclone model
  - What stage or stages did today's snow storm evolve through?

![](_page_44_Figure_0.jpeg)

![](_page_45_Figure_0.jpeg)

![](_page_46_Figure_0.jpeg)

![](_page_47_Figure_0.jpeg)

![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_51_Picture_0.jpeg)

- Lyndon Snow Storm Project: <a href="http://apollo.lsc.vsc.edu/projects/snowstorm/">http://apollo.lsc.vsc.edu/projects/snowstorm/</a>
- NOAA Weather Forecast Models: <u>http://mag.ncep.noaa.gov/NCOMAGWEB/appcontroller?prevpage=index&MainPage=index&Cat=MODEL+GUIDANCE&page=MODEL+GUIDANCE</u>
- Burlington Weather.com: <u>http://www.burlington-weather.com/models.php</u>
- NWS Burlington: <u>http://www.erh.noaa.gov/er/btv/</u>
- Daily Observed Temperatures and Precipitation via NWS: <u>http://www.erh.noaa.gov/btv/html/climatemaps/</u>
- Contact: jason.shafer@lyndonstate.edu