

Project-Based Learning and UbD in Elementary, Middle and High School Classrooms

Regina Toolin
College of Education and Social Services

Sort & Mingle Warm-Up!

Sort

Do you prefer...???

- -Hot, humid vs. cold, snowy days
- -Cloud watching vs. star gazing
- -Rain vs. snow
- -Cumulous vs. stratus clouds
- -NOAA.Gov or Weather.Com

Sorts and Mingle Warm-Up!

Mingle

- What is your favorite place on Earth?
- What is your favorite season?
- What is your favorite outdoor activity?
- What is your favorite weather/climate topic to teach?
- What is your least favorite weather/climate topic to teach?

The Magic Wand

- What would you do if you just found a <u>magic wand</u> that allows you to change three things about the way that science is taught.
- What would you change?
- Why it is important to make these changes?

Session Objectives

- 1. What is Project-Based Learning (PBL)?
 - Principles
 - Traditional Classroom vs. PBL Classroom
- 2. What is Understanding by Design (UbD)?
- 3. How are PBL and UbD applied to SWAC?

What is Project-Based Learning?

Project-based learning is

- a teaching and learning approach that focuses on the big ideas of a discipline or disciplines,
- involves students in problem-posing, problem solving and other meaningful tasks,
- allows students to work autonomously to build their own learning over an extended period of time,
- and culminates in realistic, student-generated products.

Project-based learning...

- Deeply involves students in interdisciplinary experiences rooted to subject matter
- Focuses on students discovering questions and answers
- Encourages students to be independent learners with group support
- Allows students to create unique student products that support their understanding

Principles of PBL

- Learner-centered
- Authentic content and purpose
- Challenging projects
- Product, presentation, performance or exhibition
- Collaborative and cooperative learning
- Incremental and continual improvement
- Teacher facilitated
- Explicit educational goals
- Integrates technology

How does PBL influence teachers and teaching?

- Teachers are generally enthusiastic, motivated, and successful in their quest to implement project-based learning in their science classrooms (Rosenfield and Ben-Hur, 2001).
- Collaborative PBI curriculum development resulted in positive change in teachers' understanding and practice of science and science teaching (Blumfield, 1994).
- School culture and mission and teacher prior knowledge and experience of PBI played a significant role in teachers successfully implementing PBI in secondary science classrooms (Toolin, 2004).
- PBI presents challenges to teachers in course and assessment design or the revision of existing ones (D' Amico, 1999).

How does PBL influence student learning and motivation?

- PBL maximizes the use of technological tools for analyzing, presenting, and communicating results (Grant, 2002; Morrison & Lowther, 2005).
- Student motivation and learning science significantly increased in PBL classrooms (Marx, 1994; Stratford & Finkel, 1996).
- Underrepresented HS students' interest in science and science teaching increased as a result of engaging in a PBL summer program (Toolin, 2003).
- Student collaboration and the use of technology increased as teachers enacted several aspects of project-based science in their teaching practice (Marx, 1994).
- Student motivation and commitment to learning heightened while developing ocean software projects. (Yarnell)

Differences in Traditional and PBL Instruction*

Feature	Traditional	PBL
Curriculum	Textbook driven	Problem-solving
Sequence	Fixed units	Interdisciplinary
Assessment	Test and compare	Criteria based
Technology	Peripheral	Central, integral
Classroom	Working alone	Works in groups
Student role	Receiver	Discoverer
Goals	Mastery of facts	Understanding and application

Source: Buck Institute for Education

http://www.bie.org/pbl/pbloverview/instruction.php

Curriculum Planning & Backward Design

http://www.youtube.com/watch?v=6Cagh0H7PPA&feature=related

- 1. Identify Desired Results
- 2. Determine Acceptable Evidence
 - 3. Plan Learning Experiences

(Adapted from Wiggins and McTighe, 2003)

Begin with the End in Mind!

- What will your students know and be able to do as a result of this unit project?
- •How will they interact and relate to each other and to adults?
- •How will they think? How will they think about their own learning?

Most Importantly.....

- •How will students apply AND transfer their knowledge in the real world?
- •How will the real world influence your student and your curriculum?

What's the Big Idea?

- What are the enduring understandings or big ideas that students will know and be able to do by the end of the unit project?
- Examine national, state, district standards & Principles of Learning (see nylearns.org, eservices.nysed.gov/vls)
- Review curriculum expectations and other resources
- Establish curricular priorities

Create it!

PBL Planning:

- The Vision Stage
 - Determining the Big Idea
- Inquiry Stage
 - What is the desired result and how will students know when they have reached it?
- Build Stage
 - Planning the Learning Experiences
- Reflection Stage
 - Reflecting on how to improve the project

- Project Planner
- Example from past participant
 - Sharron M. Prairie

- If time allows, more from Wiggins...
- http://www.youtube.com/watch?v=WsD gfC3SjhM&feature=related

Wrap it up!

- PBL Possibilities are endless
- Motivation and excitement for learning will increase
- Connected and collaborative learning will occur
- Students retain learning beyond testing
- Transfer of learning is the ultimate goal.

References

http://www.ci.maryville.tn.us/schools/bennett%20PBL%20wTech.ppt#256,1,Project-Based Learning

Buck Institute for Education
http://www.bie.org/pbl/pbloverview/instruction.php

http://www7.nationalacademies.org/bose/Standards Framework Public Draft Cover Letter.html

http://videos.hightechhigh.org/

http://www.terc.edu/ourwork/g_38_3_sci.html

http://imet.csus.edu/imet2/stanfillj/workshops/pbl/description.htm#Project Examples