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Several permutation strategies are often possible for tests of individual terms in analysis-of-variance (ANOVA)
designs. These include restricted permutations, permutation of whole groups of units, permutation of some form
of residuals or some combination of these. It is unclear, especially for complex designs involving random factors,
mixed models or nested hierarchies, just which permutation strategy should be used for any particular test. The
purpose of this paper is two-fold: (i) we provide a guideline for constructing an exact permutation strategy, where
possible, for any individual term in any ANOVA design; and (ii) we provide results of Monte Carlo simulations
to compare the level accuracy and power of different permutation strategies in two-way ANOVA, including
random and mixed models, nested hierarchies and tests of interaction terms. Simulation results showed that
permutation of residuals under a reduced model generally had greater power than the exact test or alternative
approximate permutation methods (such as permutation of raw data). In several cases, restricted permutations, in
particular, suffered more than other procedures, in terms of loss of power, challenging the conventional wisdom
of using this approach. Our simulations also demonstrated that the choice of correct exchangeable units under the
null hypothesis, in accordance with the guideline we provide, is essential for any permutation test, whether it be
an exact test or an approximate test. For reference, we also provide appropriate permutation strategies for
individual terms in any two-way or three-way ANOVA for the exact test (where possible) and for the
approximate test using permutation of residuals.

Keywords: ANOVA; Experimental design; Fixed and random factors; Hierarchical designs; Mixed models;
Non-parametric; Randomization tests; Resampling methods

1 INTRODUCTION

Analysis of variance (ANOVA) is a statistical tool used extensively in the biological, psycho-
logical, medical, ecological and environmental sciences. Traditional parametric ANOVA is
generally quite robust to violation of its assumption of normally distributed errors
(Cochran, 1947; Schefté, 1959; Snedecor and Cochran, 1967). The assumption of normality
is, however, unreasonable for many kinds of data (e.g., ecological variables showing a mean—
variance relationship: Taylor, 1961; Gaston and McArdle, 1994). In the analysis of univariate
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data, one can often avoid the problem of non-normal data by finding a suitable transformation
or by using generalised linear models (GLMs) or generalised linear mixed models (GLMMs),
where a non-normal error structure may be specified explicitly (e.g., Nelder and Wedderburn,
1972; McCullagh and Nelder, 1989; Breslow and Clayton, 1993).

An alternative approach is to use permutation tests, where errors are not assumed to
be normally distributed, yet exact tests are achieved (Fisher, 1935; Pitman, 1937,
Scheffé, 1959). By “exact”, we mean that the type I error of the test is exactly equal to
the a priori chosen significance level for the test. The use of permutation tests has received
renewed attention in recent years with the advent of much faster and more accessible com-
puter power (Crowley, 1992; Edgington, 1995; Manly, 1997). In general, for an exact test by
permutation, the reference distribution of a relevant test statistic under the null hypothesis is
constructed by calculating its value for all possible re-orderings (permutations) of the obser-
vations (or a large random subset of such re-orderings, Hope, 1968). A P-value is then
calculated as the proportion of the values of the statistic obtained under permutation that
are equal to or more extreme than the observed value.

Permutation tests are especially useful and relevant for multivariate analysis, where distri-
butional assumptions are even more difficult to fulfill (e.g., Mardia, 1971; Olson, 1974;
Johnson and Field, 1993). Also, in many situations where there are multiple responses, trying
to model all of them with the same kind of error structure (e.g., by using GLMs as in longi-
tudinal analysis, see Liang and Zeger, 1986; Zeger and Liang, 1992) will generally be inap-
propriate. Thus, there have been many tests proposed for the comparison of a priori groups
of multivariate data that rely on permutation of the observation vectors (e.g., Mantel and
Valand, 1970; Hubert and Schultz, 1976; Mielke et al., 1976; Smith et al., 1990; Excoffier
et al., 1992; Clarke, 1993; Edgington, 1995; Pillar and Orléci, 1996; Gower and Krzanowski,
1999; McArdle and Anderson, 2001; Anderson, 2001). Permutation testing is an important
feature of the computer program CANOCO (ter Braak and Smilauer, 1998) for canonical
ordination of ecological data and of the computer program NPMANOVA (Anderson,
2001) for non-parametric multivariate analysis based on a distance matrix. Motivation for
this research arose from our desire to extend the facilities of these programs for permutation
tests in any complex ANOVA experimental design.

There is general agreement concerning the appropriate procedure to achieve an exact per-
mutation distribution for one-way ANOVA (e.g., Edgington, 1995; Manly, 1997; Good,
2000), for either univariate or multivariate sets of observations. However, as soon as an
experimental design includes more than one factor, there is a divergence of opinion concern-
ing appropriate permutation methods that may be used for particular tests. For example, to
obtain a test of an interaction term by permutation, ter Braak (1992) suggested permutation
of residuals under a full model, Manly (1997) and Gonzalez and Manly (1998) suggested
unrestricted permutation of the raw data, while Edgington (1995) contended that a valid
test for interaction cannot be done using permutations.

Some extensive empirical and theoretical work has been done to investigate appropriate
strategies for an approximate permutation test of an individual term in multiple linear regres-
sion, for which no exact test exists (Anderson and Legendre, 1999; Anderson and Robinson,
2001). It was found that permutation of residuals under a reduced model (Freedman and
Lane, 1983) performed the best in the widest set of circumstances (Anderson and
Legendre, 1999) and also comes the closest to the conceptually exact test (Anderson
and Robinson, 2001).

Since ANOVA with fixed factors is simply a special case of multiple regression, but with
categorical predictor variables, one could simply be satisfied that the results obtained for
multiple regression apply equally well for individual terms in ANOVA designs. However,
ANOVA designs introduce two important additions (or strategies) to the possibilities avail-
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able for multiple regression: (i) restricted permutations (i.e., allowing permutations to occur
only within levels of other factors) and (ii) permutation of units other than the observations
(e.g., permuting the units induced by a nested factor in the test of a higher ranked factor). The
second strategy may be pertinent in designs with random factors. In many ANOVA designs,
an exact test for an individual factor can be constructed using one or other or both of these
additional strategies. It is virtually entirely unknown, however, just how such tests compare
with the various approximate tests in terms of their power for different kinds of designs.
Thus, it is unclear, for any particular term in a complex ANOVA design, which combination
of (i) choice of permutable units, (ii) use of restricted permutation and/or (iii) permutation of
raw data or residuals will provide the most powerful or most appropriate strategy.

In order to construct an appropriate permutation distribution for any term in a complex
ANOVA design, it is necessary to clarify several important issues, including: (a) Should
raw data be permuted, or some form of residuals? (b) Which units should be permuted: indi-
vidual observation units or some larger units, such as levels of a nested factor in a test of the
higher ranked factor of a hierarchy? (c) When should permutations be restricted to occur
within levels of other factors? (d) How may interaction terms be tested using permutations?
(e) Which tests are exact and which are approximate? (f) What test-statistic should be used
for the test?

The purpose of this paper is to provide precisely such a clarification of these issues. First,
we give a guideline for the construction of an exact permutation test, where possible, in any
given situation for any factor in a complex ANOVA design. This guideline sheds light on
how the design of the experiment or survey, including whether factors are fixed or random,
nested or crossed with other factors, determines how valid permutation tests are to be done.
No such general guideline, including the possibility for random effects, mixed models and
nested hierarchies, currently exists in such a succinct form in the literature, to our knowledge.

Second, we give results from specific sets of empirical Monte Carlo simulations done to
compare the level accuracy and power of several possible permutation strategies (including
the exact test, where possible) for individual terms in several models of two-way ANOVA.
These were chosen so that, from them, important general statements and recommendations
for multi-way ANOVA could be made. These are the most extensive simulations for permu-
tation tests in complex ANOVA designs provided to date, to our knowledge, as well as being
the only ones to include nested hierarchies and mixed or random effects models. Although
we restrict our attention here to univariate ANOVA designs, the results will hold, in general,
for the analogous permutation tests on multivariate response vectors.

2 CONSTRUCTING AN EXACT TEST

We provide a guideline for constructing an exact permutation test for individual terms in
a multi-factorial ANOVA. We first need to delimit the class of designs and introduce some
definitions.

We limit our discussion to equi-replicated orthogonal ANOVA designs, following Nelder
(1964a; 1964b). By orthogonal designs, we mean effects are independent, whether they be
crossed or nested. In considering expected mean squares for terms in any ANOVA model
(and for simulations) we also rely on the usual summation restrictions for fixed effects,
i.e., that the sum individual treatment effects across all levels of a fixed factor equals zero.
For alternative formulations of expected mean squares (i.e., without summation restrictions
or for unbalanced designs) consult Searle et al. (1992). We consider that the same general
guideline below should be followed for permutation tests for unbalanced designs, but do
not provide any particular details of this here for particular cases of unbalance.
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The null hypothesis for a test of any particular factor, whose categorical levels we may
generally call treatments, is that there is no treatment effect. More generally, the null hypo-
thesis is that the errors associated with units in different treatments have the same distribution.
In the case of more complex designs, the null hypothesis is conditional: given the other terms
in the model (such as main effects in the test of an interaction), the errors associated with
units in different treatments have the same distribution. We consider that exchangeability
of units for permutation tests gains its validity by virtue of the statement of similar error
distributions under the null hypothesis (e.g., Kempthorne, 1952).

Although permutation tests avoid the assumption of normality, they still assume exchange-
ability of relevant units under the null hypothesis. Exchangeability can be ensured through
the random allocation of treatments to units in experimental design (e.g., Fisher, 1935;
Kempthorne, 1955; Scheffé, 1959) or must be assumed for observational studies (e.g.,
Kempthorne, 1966). The assumption of exchangeability is tantamount to the assumption
that errors are independent and identically distributed (“i.i.d.”). Note that this does not
avoid the assumption of homogeneity of error variances (e.g., Boik, 1987; Hayes, 1996).

Next, we provide definitions for the “order” of a term and what is meant by the
“exchangeable units” for a test. By the “order” of a term, we mean the following: main
effects are of first order, a two-way interaction term is of second order, etc. A term that is
nested in another term has an order one more than the order of the term within which it is
nested. “Exchangeable units” are identified in the denominator mean square of an F-ratio
for any particular term. Consider Figure 1. Where the residual mean square is the mean
square in the denominator for a test, this indicates that individual units (observations) are
exchangeable under the null hypothesis (Fig. 1a). Where the denominator mean square of
an F-ratio is the mean square of, for example, a nested term, then the exchangeable units con-
sist of the units induced by the nested term. For example, in Figure 1b there are eight (2 x 4)
units induced by the nested term B, each unit consisting of two replicates. Where the denomi-
nator of an F-ratio is the mean square of, for example, an interaction term, then the units con-
sist of the blocks of cells identified by that interaction (e.g., if one factor has four levels and a
second factor has three levels, then the interaction identifies 4 x 3 = 12 cells which are the
exchangeable units, Fig. 1c). A term whose mean-square appears as the denominator in the
F-ratio of the test of another term in the model identifies the exchangeable units for that test.
The exchangeable units have the same distribution under the null hypothesis.

We provide the following general guideline:

An exact permutation test for any term in an ANOVA model is achieved by permuting the
exchangeable units identified by the denominator mean-square of the F-ratio and restricting
permutations to occur within the levels of terms of either smaller order or of the same order
as the term being tested.

The guideline yields a permutation test based on restricted permutations of the exchange-
able units. The guideline ensures that, under the null hypothesis, the likelihood of the data is
invariant under these permutations, and consequently the test is exact. It encapsulates the idea
that all unknown parameters in the model not being tested should be kept constant under per-
mutation in order to isolate the test on the factor of interest. In the context of equi-replicated
orthogonal ANOVA designs we identify two different aspects to guarantee the invariance:
(1) components of variation that may contribute to variability in the term being tested, and
(i) other non-zero terms in the linear ANOVA model. The first of these is addressed by con-
sidering the appropriate exchangeable units for the permutation test. The second is addressed
by restricting the permutations of those units within levels of other factors.

The construction of the F-ratio itself provides the necessary information concerning the
exchangeable units by identifying the components of variation that contribute to variability
in the term being tested. The ratio is constructed by reference to the expected mean squares
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FIGURE 1 Diagram of permutation strategies for exact tests: a) test of A in a one-way ANOVA model; b) test
of factor A, the higher-ranked factor in a two-way nested design, with random factor B nested within factor A and
c) test of factor A, a fixed factor, in a two-way crossed mixed model design (where factor B is random).

of individual terms. If components of variation that are not being tested are present in the
numerator’s expected mean square, they must appear in the expected mean square of the
denominator in order to isolate the component of variation of interest for the test using
the F-ratio. The denominator mean square thus identifies the components of variation that
contribute to the variability in the term being tested and, by this, the exchangeable units to
be used in the permutation test.

Some terms in the model may not contribute to variability in the term of interest but, if
non-zero, would be confounded with (“mixed with”) the term under test. Restricted permu-
tation within levels of these factors avoids this by ensuring that the sizes of their effects in
the model remain constant under permutation. For example, in a two-way ANOVA without
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interaction, permutations for a test of one factor should be restricted to occur within levels of
the other factor for an exact test.

For a discussion of restricted permutation for many kinds of complex ANOVA designs in
psychology, see Edgington (1995). For a discussion of restricted permutation in the context
of multiple regression, where predictor variables take several fixed repeated values, see
Brown and Maritz (1982).

The exact permutation test will be unique for any particular term in an ANOVA model. An
exact permutation test, however, may not always exist, or may not have enough possible per-
mutations to enable reasonable power for detecting alternatives. This leads us to consider
approximate tests.

3 APPROXIMATE TESTS

In situations where the strategy required for an exact test is not possible (i.e., where the
restrictions required leave no possible permutations), then no exact test exists, but an appro-
ximate permutation test may be used. This occurs, for example, in the case of interaction
terms. Except in some special cases (Welch, 1990), it is not possible to construct an exact
permutation test for an interaction using the F-statistic, as restricting permutations within
levels of the main effects leaves no alternative possible permutations: the F-ratio obtained
with the observed data is the only possibility. (For alternative approaches using other test
statistics, see Pesarin, 2001).

Another situation where an exact test is not feasible occurs when the combination of
restrictions and exchangeable units results in there being too few possible permutations to
obtain a reasonable test. For example, if there are only two levels of a nested factor (B) in
each of two levels of a higher ranked (but lower order) factor (A), this leaves only 6 possible
permutations for the test of A, 3 of which would give unique values for the test statistic and
one of which is the observed value. This is clearly not sufficient to provide a reasonable test.
For complex designs, there are essentially three different approaches for an approximate test:
permutation of residuals under a reduced model (Still and White, 1981; Freedman and Lane,
1983), under the full model (ter Braak, 1992) or unrestricted permutation of raw data
(Manly, 1997; Gonzalez and Manly, 1998).

For a comparison of these approaches in the more general context of multiple regression,
see Anderson and Legendre (1999) and Anderson and Robinson (2001). Permutation under
the reduced model comes the closest to a conceptually exact test (Anderson and Robinson,
2001). For this reason, we here generally restrict our attention concerning permutation of
residuals to reduced-model residuals, although full-model residuals can also be used in
these situations, and would be expected to give highly comparable results (Anderson and
Legendre, 1999). We also add that the problems raised by Kennedy and Cade (1996) for
the method of permutation of raw data, which concerned the effects of outliers in nuisance
variables for multiple regression, cannot occur in the context of ANOVA, where factors are
categorical and thus do not contain outliers (Anderson and Legendre, 1999).

In what follows, we describe and compare the possible permutation strategies (appro-
ximate and exact, where possible) available for tests of individual terms in two-way
ANOVA for nested, crossed fixed and crossed mixed models. These demonstrate the princi-
ples involved in constructing an exact test, which we then extend to three-way models.
In particular, we give results of empirical simulations that compare the various possible
permutation strategies, demonstrating which of them provides the greatest empirical power
for tests.
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4 NESTED DESIGN

Consider a nested (hierarchical) ANOVA design with the following linear model:
Vi = H+Ai + B(A)) + ik

where i is the unknown population mean, B(4);; is the effect of the jth level of factor B
within the ith treatment level of factor A, symbolised by A4;, and ¢;; is the unknown error
associated with observation y;;. The number of levels in factors A and B will be designated
by a and b, respectively, and the number of replications per AB combination by n. We con-
sider A as a fixed factor, but for this model the same discussion will apply whether A is fixed
or random. Factor B, being nested, will, for present purposes, always be considered random.
Note that although factor B has b levels, it introduces a total of a x b effects, denoted by
B(A);(;, into the model. For the permutation test, we assume only that the &’s are independent
and identically distributed (i.i.d.), but not that they are (necessarily) normal. Throughout, we
shall denote sums of squares, mean squares and F-ratios for a particular term (say for
factor B) as SSg, MSg and Fjp, respectively. Also, the subscript “R” shall indicate the resi-
dual, while the subscript “T” shall indicate the total. For the above model, a test of factor B is
provided by the statistic Fg = MSg/MSg and a test of factor A is provided by
Fp = MSA/MSg (e.g. Kempthorne, 1952; Schefté, 1959; Winer ef al., 1991).

4.1 Test of the Nested Factor, B

The null hypothesis for an exact test of the effect of factor B can be phrased: given the pre-
sence of A, about which we make no assumption, the effect of B within A is not different
from zero. Thus, the permutations of observations (y) are done across the levels of B, but
these are restricted to occur within each of the levels of A. This means that whether or
not factor A has an effect, we can test for significant variability due to factor B. This strategy
is consistent with the guideline.

This provides an exact test because (i) SSt stays constant across all permutations,
(ii) restricting permutations within levels of A means that SS, remains constant across all
permutations, and (iii) SSt = SSg + SSp + SS4. Thus, permutation mixes (exchanges)
variation only between SSg and SSg, which is exact for the test of Fg = MSg/MSg.

For an approximate test, one can calculate and permute the reduced-model residuals
Fiik = Yijk — Yi., where y; is the mean of the observations in level i of factor A. This amounts
to estimating and “removing” the effect of A by subtracting the mean of the appropriate level
of A from each observed value. Permuting these residuals will yield an approximate test.

An alternative approximate test of factor B is provided by simply permuting all observa-
tions without restriction. This mixes variability among all terms in the model, including
variability due to factor A (i.e., SSa), which is not held constant under permutation.
However, as this “mixing” of SS, under permutation impinges on each of SSg and SSg,
the ratio Fg = MSg/MSg, on average, is unaffected, giving a reasonable approximate test
(Gonzalez and Manly, 1998; Anderson and Robinson, 2001).

Simulations were done to demonstrate the type I error and relative power of the above pro-
posed strategies of permutation to detect variability due to factor B. Data were simulated
according to the above model with a =4, b = 5 and the sample size within each cell (n)
was set at n = {2, 5, or 10}, where the effect of factor A was non-zero: 4; = {33.3, 33.3,
33.3, —100}. The additive effect of levels of the random factor B were chosen randomly
from a normal distribution with mean zero and gradual increases in standard deviation.
Note that b =35 different values of B(4);; were chosen within each level of factor A.
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That is, a total of ab = 20 different effects were chosen randomly, with five assigned to each
of the a = 4 levels of factor A. This is the meaning of a nested effect: its levels are specific
and peculiar to each level of factor A. Although other error distributions could be used in
modeling levels of random effects in simulations, we used the normal distribution for this,
as it allowed the most fundamental issues in ANOVA designs to be investigated in the
first instance.

For this and for all subsequent simulations, random errors were chosen from each of four
different distributions: (i) a standard normal distribution, (ii) a uniform distribution on the
interval (1, 10), (iii) a lognormal distribution, which consisted of exponentiating random
values from a standard normal distribution, or (iv) an exponential (1) distribution whose
values were then cubed. The latter distribution was used to simulate data that were radically
non-normal (e.g., Manly, 1997).

For each scenario, a total of 1000 sets of simulated data were produced and tested with
each permutational approach using 999 random permutations. The test statistic used in all
simulations was the F-ratio with a denominator appropriate for the design. For each simulated
data set, a P-value for the normal-theory F-test, using the tables, was also obtained for com-
parison. In this and in subsequent simulations, pair-wise comparisons of the power (as the
number of rejections of the null hypothesis) of different methods were done using
Wilcoxon’s signed-ranks tests.

Type I errors for all test procedures did not differ significantly from one another or from
the nominal significance level of 0.05. These simulations also showed that all test procedures
had virtually identical power when errors were normal (Fig. 2a, Tab. I), whereas the tradi-
tional F-test was most powerful in the case of uniform errors (Tab. I). With lognormal or
exponential cubed errors, however, the exact test (permuting data within levels of A) had
the greatest power, followed by permutation of residuals (Fig. 2b, Tab. I). Permutation of resi-
duals approached the power of the exact test with increases in n. Permutation of raw data
without restriction and the normal-theory F-test had significantly less power than permutation
of residuals or the exact test (Tab. I).

4.2 Test of the Higher Ranked Factor, A

The null hypothesis for an exact test of the effect of factor A can be phrased: given the varia-
bility across levels of B, about which we make no assumption, the effect of A is not different
from zero. The expected mean square for factor A contains a component of variation attri-
butable to the nested factor B. Therefore, Fx = MSs/MSp whose denominator indicates
the exchangeable units for the test as levels of B. Rather than permuting individual replicates,
replicates within each level of B are kept together as a unit and these units are permuted
across levels of A for the exact test (Fig. 1b).

This provides an exact test because (i) SSt stays constant across all permutations, (ii) per-
muting whole levels of B as units means that SSg remains constant across all permutations,
and (iii)) SSt = SSg + SSg + SSa. Thus, permutation mixes (exchanges) variation only
between SSp and SSg, which is exact for the test of 4 = MSx/MSg.

Note that if it had been determined from a previous test that variability due to factor B
was not significant with a P-value that was sufficiently large, one would have the option
of pooling factor B with the residual (i.e., ignoring factor B and permuting all observations
randomly) and doing a one-way test of factor A, as would be the case for the normal-theory
test. The decision “to pool or not to pool” in such situations is an important one, and a deter-
mination of what constitutes a P-value that is “sufficiently large” may not be straightforward.
This issue is the same for permutation tests as for the normal-theory test and won’t be
discussed further here (Winer et al., 1991).
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FIGURE 2 Power curves for permutation tests and the normal-theory F-test for a two-way nested design:
O =Y (permutation of raw data),

A = R (permutation of residuals),

O = Y(A) (permutation of raw data within levels of A),

A =Yab (permutation of raw data as ab units),

+ = normal-theory F-test.

Permutation of residuals under a reduced model for a test of A might be done using the
residuals 7 = yix — yi. +yi. — .., where y;;. is the mean for the ijth cell, y;. is the mean
of the observations in level i of factor A and y__ is the estimated overall mean. This essentially
removes the effect of the nested factor, B, if any, independently of A. Residuals under the full
model would be 7 = y;x — y;. and one might also imagine that an approximate test could
be provided by permutation of raw data.
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Simulations were done to compare the relative type I error and power of the exact test, each
of the approximate tests (unrestricted permutation of raw data, permutation of residuals under
the reduced or under the full model) and the normal-theory F-test. Data were simulated as
described in Section 4.1, but this time variability due to B was kept constant (and large)
while the fixed effect of factor A was gradually increased. For each level of factor A, separate
levels of B were chosen randomly from a normal distribution with mean zero and standard
deviation = 20.0.

There are an infinite number of possible values the fixed effects (4;,i = 1, ..., a) may take
in an investigation of power. This is the nature of ANOVA: it is overparameterised
(e.g., Schefté, 1959). However, an investigation of power (for a given sample size) can be
indexed uniquely by the measure of effect size:

v Z?:l(Ai - ;1)2/“

Og

fa=

with 4 = Y i Ai/a (e.g., Winer et al., 1991). For simplicity, as o, is a constant for any set of
simulations, we shall use 05 = o, - fa as a measure of effect size. Note that 04 for a fixed
factor A is analogous to gp for a random factor B. This has the consequence that different
ranges of 0, (or Osp or ag) are required to obtain power curves for different error distribu-
tions used in simulations.

When data were simulated with normal, uniform or lognormal errors, all tests had type I
error close to the nominal significance level (Tab. II). However, when data were simulated
with the highly skewed exponential cubed errors the normal-theory F-test had type I error
significantly lower than the significance level of 0.05 (Tab. II). Furthermore, when levels
of the nested factor were drawn from a distribution with large variance, all of the approximate
methods, including permutation of raw data and permutation of any form of residuals, had
significantly inflated type I error (Tab. II). Thus, the use of any of these approximate tests
is unwise for the test of a higher ranked factor in a nested design.

In comparisons of power, we only included those methods that did not suffer from inflated
type I error: namely, the normal-theory F-test and the exact permutation test. There was not a
striking visual difference in power between these two methods evidenced in the power plots
(Fig. 2¢,d). However, Wilcoxon’s pair-wise tests indicated that the exact permutation test had
significantly greater power than the normal-theory F-test for the situation with exponential
cubed errors, while there was no significant difference in the power of these two tests for nor-
mal or lognormal errors (Tab. I), and for uniform errors, the F-test was most powerful.

Clearly, the exact permutation test should be used for any test of a higher ranked factor in
a nested hierarchical design where non-normality is an issue. None of the approximate
permutation tests provides an alternative that can be trusted to maintain type I error for
this situation.

Researchers would be well-advised to increase replication of the levels of nested random
factors, as the lack of such replication may severely sacrifice the power of the permutation
test, as for the normal-theory test. For example, where A has 2 levels, there must be at
least 4 levels of the nested factor B in order to obtain an exact permutation test for the effect
of A whose P-value can exceed a significance level of 0.05. In other words, 3 levels of the
nested factor B in each of 2 levels of A gives only 10 possible permutations yielding a unique
value for F, while 4 levels of B would give 35 possible permutations. The lack of a sufficient
number of possible permutations (due to only a small number of exchangeable units) is
potentially a serious drawback and can only be remedied by increasing the number of levels
of the nested factor, since none of the approximate methods of permutation will do. This is
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TABLE II Proportion of rejections of the true null hypothesis (type I error) out of 1000 simulations
with significance level =0.05 for the test of a higher ranked factor (A) in a two-way nested ANOVA
design, with Fp =MS,/MSg. Factor B is random and nested within levels of A. Levels of B were
chosen randomly from a normal distribution with mean zero and standard deviation op. Values that lie
outside the 95% confidence interval for type I error (which has a binomial (n, p) distribution with
n=1000 simulations and p =0.05, i.e., 0.036—0.064) are indicated with an asterisk.

a b n op Yab Y R(Reduced) R(Full) F
e~ N(0,1)
4 5 2 1.0 0.060 0.057 0.054 0.059 0.058
4 5 5 1.0 0.045 0.045 0.045 0.047 0.045
4 5 10 1.0 0.047 0.048 0.050 0.051 0.052
4 5 2 20.0 0.048 0.045 0.043 0.048 0.051
4 5 5 20.0 0.042 0.040 0.043 0.038 0.042
4 5 10 20.0 0.050 0.057 0.050 0.053 0.051
& ~ Uniform(1, 10)
4 5 2 1.0 0.050 0.056 0.055 0.052 0.055
4 5 5 1.0 0.049 0.055 0.050 0.051 0.052
4 5 10 1.0 0.058 0.058 0.059 0.061 0.060
4 5 2 20.0 0.048 0.042 0.040 0.045 0.045
4 5 5 20.0 0.046 0.044 0.045 0.045 0.047
4 5 10 20.0 0.051 0.050 0.055 0.053 0.053
& ~ Lognormal
4 5 2 1.0 0.036 0.032%* 0.034* 0.034* 0.031%*
4 5 5 1.0 0.062 0.053 0.062 0.062 0.056
4 5 10 1.0 0.052 0.045 0.047 0.047 0.044
4 5 2 20.0 0.054 0.052 0.052 0.060 0.053
4 5 5 20.0 0.047 0.048 0.050 0.057 0.050
4 5 10 20.0 0.040 0.036 0.036 0.045 0.039
& ~ exp( 1)°

4 5 2 1.0 0.049 0.050 0.033* 0.038 0.026*
4 5 5 1.0 0.043 0.045 0.032* 0.034* 0.024*
4 5 10 1.0 0.055 0.052 0.045 0.044 0.038
4 5 2 20.0 0.060 0.072* 0.061 0.104* 0.057
4 5 5 20.0 0.059 0.068* 0.070* 0.085* 0.057
4 5 10 20.0 0.057 0.067* 0.069* 0.071* 0.058

Yab = permutation of raw data as ab units, which provides an exact test in this case;
Y =unrestricted permutation of raw data;

R(reduced) = permutation of residuals under the reduced model;

R(full) = permutation of residuals under the full model;

F =normal-theory F-test (tabled values).

somewhat analogous to the situation encountered with parametric ANOVA: greater power
can be achieved by increasing the degrees of freedom associated with the denominator
mean square of the F-ratio.

5 CROSSED DESIGN, FIXED EFFECTS
Consider a fixed effects two-way ANOVA design with the following linear model:
Yijk = i+ A; + B + ABj; + i
where A and B are fixed factors, u is the unknown population mean, 45;; indicates the inter-

action effect of the ijth cell and ¢ is the unknown error associated with observation yy;. As
before, for the permutation test we assume that the &’s are i.i.d.
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5.1 Test of Interaction

There is no exact permutation test for an interaction using an F-ratio (but see some alterna-
tives in Pesarin, 2001). This is so because there are no possible permutations left that would
give an F-ratio different to the observed value when permutations are restricted to occur
within levels of each of the main effects. For an approximate test that attempts to control
for main effects, one can calculate and permute residuals rjx =y —yi. —y,; +¥..,
where y;. and y . are as previously described and ;. is the mean of observations in level j
of factor B. The method of permutation asymptotically approaches the exact test because,
although SS, and SSg are not kept constant, variability due to A and B are estimated and
removed by subtracting means.

a) Crossed, test of AB, € ~N(0,1) b) Crossed, test of AB, € ~ exp(1)*
1T tT

09 T

Power

Power

20

FIGURE 3 Power curves for permutation tests and the normal-theory F-test for a two-way crossed fixed effects
design. Symbols are as in Figure 2, except O = Y(B) (permutation of raw data within levels of B).
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Unrestricted permutation of raw data is another approximate test that can be used. It does
not attempt to control for the main effects of A or B, but, as in all cases with complex
designs, relies on the pivotal properties of the F-ratio. This approach mixes variability
under permutation among SSp, SSg, SSap and SSg.

Simulations were done to examine type I error and relative power of these two approximate
tests and the normal-theory F-test, as in previous situations. Here, a = 2,5 = 4, n = 5, non-
zero levels of A were set at 4; = {50, —50} and of B were set at B; = {50, —50, 20, —20}.
Fixed levels of 4B;; were chosen to provide a gradual increase in the interaction effect,
denoted by Oxp, where Op = \/ > " (4B; — 4B)*jab and 4B = Y%, Zj;l ABj/ab.

Type I error did not differ significantly from 0.05 for any of these methods. All of the tests
had comparable power for the situation with normal errors (Fig. 3a), although the Wilcoxon
test indicated that the normal-theory F-ratio was most powerful in this situation and for uni-
form errors (Tab. I). Permutation of residuals, however, was significantly more powerful than
raw data permutation or the traditional F-test in the situation with either lognormal or
exponential cubed errors (Fig. 3b, Tab. I).

5.2 Test of Main Effect

If the test for interaction is not significant, tests of each of the main effects are reasonable. In
that case, E(MSag) = E(MSg) = 6?2 and the model is y;x = u + 4; + B; + &;. An exact test
for factor A consists in permuting raw observations but restricting them to occur within levels
of B and calculating F/, = MS,/MSg. This means SSg, like SSt, remains constant across all
permutations in the test of the effect of A, so the test is exact. Note that this method does not
provide an exact test in the situation where a significant AB interaction is present, as SSap
would not be held constant in this permutation strategy.

Approximate tests are provided by either permutation of the residuals rjx = y;x —y,. or
unrestricted permutation of raw data. Simulations were done again to compare relative
power of these methods. For these, a =4,b =4,n =15, B; = {50, —50, 20, —20} and the
effect of factor A was gradually increased. All interaction effects were set at zero.

Once again, type I errors of the methods did not differ significantly from 0.05. For this
situation, the exact test had significantly less power to detect the false null (hypothesis
than any of the other tests, regardless of the error distribution (Tab. I, Fig. 3c). When errors
were either lognormal or exponential cubed, permutation of residuals had the greatest power
of any of the tests (Tab. I, Fig. 3d), while the normal-theory F-test was most powerful for the
normal or uniform error distributions (Tab. I).

6 CROSSED DESIGN, MIXED MODEL

The crossed mixed model can be denoted in the same way as for the crossed fixed effects design
(Section 5 above), but now consider that while factor A is fixed, factor B is a random factor.

6.1 Test of Fixed Factor, No Interaction

For such a mixed model, the test of interaction would be as discussed for the fixed effects
model in Section 5.1 above. The test for the random effect would be provided by
Fg =MSg/MSg, and would proceed as for the test of main effects described in
Section 5.2 above (i.e., the test of a main effect in the absence of a significant interaction).
The important distinction from the completely fixed effects model comes about in the test of
the fixed factor, A, in the mixed model. Here, the F-ratio is constructed as Fa = MSA/MSas.
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This indicates that for the exact test of factor A, the exchangeable units are the ab units
(i.e., Fig. 1c). Furthermore, the exact test requires that permutation of these units be restricted
to occur within levels of factor B, according to the guideline.

This provides an exact test for A because (i) permutation within levels of B means SSg
remains constant throughout the permutations, (ii) permutation of the ab units means SSg
remains constant throughout the permutations (iii) SSt = SSA 4+ SSg + SSag + SSg and
(iv) SSt remains constant throughout the permutations. Thus, the permutation strategy
described exchanges variability only across SSp and SSap, which is exact for a test of
Fan = MSA/MSys.

Note that the common wisdom for such situations is that an exact test of factor A would
consist of simply permuting observations within levels of B (e.g., Edgington, 1995). This
ignores the fact that the expected mean square of A includes a component of variability due
to the interaction term, due to the fact that B is a random factor. As a consequence, restricting
permutations within levels of B does not provide an exact test in this case. We included this
method in our simulations (below) for comparison with the exact test according to the guideline.

Several approximate permutation methods could be used for this test. First, one can simply
permute raw data values without restriction. Alternatively, one can permute the residuals
Fiik = Yijk — ¥,.» which attempt to remove the effect of factor B in the data through subtraction
of means in order to isolate the test of factor A. One further possible approximate test is to
permute these residuals, but only as ab units. The rationale for this test is to remove the effect
of factor B by subtracting means, but to use the exchangeable units identified for the exact
test, which keeps SSr constant across permutations.

Altogether, there were thus 5 different methods of permutation compared in these simula-
tions, in addition to the traditional ANOVA F-statistic (Tab. I). Data were simulated with
a=4,b=4 and n =5. Levels of B were obtained randomly from a normal distribution
with mean zero and standard deviation og = 20.0. Note that, unlike the nested case, the 4
levels of B (B;,j =1, ..., b), although random, were nevertheless the same four levels in
each of the levels of A. Levels of factor A were fixed and gradually changed to increase
the effect of A, while the interaction effect was set at zero.

The methods did not differ significantly from 0.05 in their empirical type I errors. When
errors were normal or uniform, the normal-theory F-test was most powerful, followed closely
by all of the permutation tests, except for the permutation of raw data within levels of B. This
was significantly less powerful than any other method by quite a wide margin (Fig. 4a, Tab. I).
When errors were lognormal or exponential cubed, permutation of residuals was most power-
ful, followed by the exact test, while permutation of raw data within levels of B was still the
least powerful of all the tests (Fig. 4c, Tab. I).

6.2 Test of Fixed Factor, Presence of Interaction

For the fixed effects model, it is generally considered illogical to test main effects in the pre-
sence of a significant interaction. For the mixed model, however, one may be interested in the
test for a significant fixed effect, over and above any variability caused by the interaction,
which in this case simply contributes a random error component to the model. That is, the
random interaction effect may contribute a significant source of variation (much as a nested
random factor does), but this may not deter an experimenter from wishing to know, on aver-
age, if a consistent fixed main effect can still be detected across levels of the random factor.

Thus, the five different permutation methods outlined in Section 6.1 above were also
compared for this situation. First, to investigate type I error, data were generated with
a=4,b=4 and n =10 and levels of A were set at zero, while levels of B were ran-
domly chosen from a normal distribution with mean zero and standard deviation
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a) Crossed, mixed, test of A, € ~N(0,1) b) Crossed, mixed, test of A, € ~ N(0,1)
no interaction interaction present
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¢) Crossed, mixed, test of A, € ~ exp(1)® d) Crossed, mixed, test of A, € ~ exp(1)?
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FIGURE 4 Power curves for permutation strategies and the normal-theory F-test for the test of a fixed factor (A) in
a two-way crossed mixed model (B is random). Symbols are as follows:

[0 =Y (permutation of raw data),

A =R (permutation of residuals),

O = Y(B) (permutation of raw data restricted within levels of B),

@ —Rab (permutation of residuals as ab units),

A =Y(B)ab (permutation of raw data as ab units, restricted within levels of B),

+ = normal-theory F-test.

og = {0, 1,5, or 10}. Levels of AB were also chosen from a normal distribution with mean
zero and standard deviation oag = {0, 1,5, or 10}. To investigate power, parameters were
setat a=4, b=4,n=15,03 = 1.0 and o, = 5.0, while the effect of A was gradually
increased. Note that if the standard deviation for random factor B in the crossed mixed
model (which we may call op crosseq fOr clarity) is equal to zero, then the test of the fixed fac-
tor A in the crossed mixed model would be the same as the test of A in the nested design
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whenever gap = 0B nested- HOWeEVEr, When op crossed 7 0 and aap # 0, the test of A in the
crossed mixed design provides a new situation, which is the case of interest here.

The exact test (i.e., permuting ab units within levels of factor B, as specified by the guide-
line) and permuting residuals of factor B as ab units were the only tests that adequately main-
tained type I error in all situations (Tab. III). The traditional normal-theory F-test maintained

TABLE III Proportion of rejections of the true null hypothesis (type I error) out of 1000
simulations with significance level =0.05 for the test of a fixed factor (A) in a two-way crossed
mixed model ANOVA design, with F5 =MS,/MSag. The b levels of the random factor B and
the ab levels of the interaction AB were each chosen randomly from a normal distribution with
mean zero and standard deviations o and oap, respectively. Values that lie outside the 95%
confidence interval for type I error (which has a binomial (n, p) distribution with »=1000
simulations and p =0.05, i.e., 0.036-0.064) are indicated with an asterisk.

op 4B Y(B)ab Y(B) Y R Rab F
e~ N(0,1)
0 0 0.047 0.052 0.047 0.047 0.048 0.049
0 5 0.040 0.000* 0.047 0.046 0.041 0.040
0 10 0.049 0.000* 0.045 0.047 0.047 0.047
5 0 0.056 0.054 0.050 0.052 0.049 0.051
5 5 0.051 0.000* 0.045 0.049 0.049 0.048
5 10 0.042 0.000%* 0.039 0.040 0.041 0.039
10 0 0.050 0.057 0.048 0.047 0.048 0.050
10 5 0.043 0.000* 0.047 0.047 0.047 0.046
10 10 0.057 0.000%* 0.058 0.061 0.057 0.059
& ~ Uniform(1, 10)
0 0 0.057 0.053 0.058 0.058 0.055 0.058
0 5 0.062 0.000* 0.057 0.061 0.055 0.060
0 10 0.056 0.000* 0.050 0.047 0.055 0.052
5 0 0.054 0.052 0.050 0.051 0.051 0.051
5 5 0.044 0.000* 0.045 0.044 0.040 0.047
5 10 0.040 0.000%* 0.043 0.046 0.041 0.043
10 0 0.050 0.047 0.046 0.047 0.045 0.046
10 5 0.051 0.001* 0.046 0.049 0.050 0.046
10 10 0.059 0.000%* 0.063 0.060 0.060 0.058
& ~ Lognormal
0 0 0.052 0.055 0.056 0.052 0.049 0.048
0 5 0.044 0.000* 0.047 0.043 0.042 0.043
0 10 0.052 0.000* 0.054 0.053 0.050 0.049
5 0 0.059 0.051 0.051 0.055 0.048 0.050
5 5 0.057 0.000* 0.052 0.054 0.054 0.052
5 10 0.048 0.000%* 0.046 0.048 0.041 0.045
10 0 0.056 0.053 0.057 0.065* 0.056 0.056
10 5 0.042 0.000* 0.042 0.043 0.039 0.042
10 10 0.045 0.000* 0.043 0.042 0.040 0.042
& ~ exp(1)®
0 0 0.052 0.052 0.056 0.054 0.042 0.032*
0 5 0.047 0.047 0.065* 0.068* 0.039 0.038
0 10 0.058 0.042 0.076* 0.074* 0.055 0.055
5 0 0.048 0.045 0.048 0.046 0.038 0.032*
5 5 0.056 0.059 0.067* 0.070* 0.046 0.041
5 10 0.056 0.039 0.067* 0.073* 0.051 0.050
10 0 0.058 0.055 0.055 0.062 0.044 0.038
10 5 0.055 0.052 0.058 0.060 0.041 0.039
10 10 0.042 0.033* 0.059 0.062 0.042 0.041

Y = permutation of raw data; R = permutation of residuals;

Y(B) = permutation of raw data within levels of B;

Rab = permutation of residuals, as ab units;

Y(B)ab = permutation of raw data, as ab units, within levels of B, which gives the exact test in this case;
F =normal-theory F-test (tabled values).
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type I error for situations with normal errors, but tended to be too conservative when the
errors were exponential cubed (Tab. III). In contrast, the method of permutation usually advo-
cated for such tests (i.e., permuting raw data within levels of factor B) gave empirical type |
errors that were extremely conservative in the case of normal, uniform or lognormal errors
when simulated data included variation due to the interaction term (i.e., for non-zero gag,
Tab. I1I). In contrast, the approximate methods of permuting residuals of factor B or permut-
ing raw data showed inflated type I error in certain circumstances with exponential cubed
errors and non-zero oap (Tab. III).

In terms of power, with normal errors, the traditional F-test was significantly more power-
ful than the other tests (Tab. I, Fig. 4b). There were no significant differences among the other
tests, except all of them were more powerful than the permutation of observation units within
levels of the other factor (i.e., Y(B), Tab. I). In fact, with these parameters (non-zero
interaction and normal errors), this test failed to find any significant effects of factor A at
all, even when the power of the other tests was near 100% (Tab. III, Fig. 4b).

When errors were radically non-normal (i.e., exponential cubed), then the permutation of
raw data and permutation of residuals had the greatest power (Tab. I, Fig. 4d), however,
neither of these methods maintained type I error at nominal levels for all situations
(Tab. III). The next most powerful test was the exact test (i.e., Y(B)ab), followed by
permutation of residuals of B as ab units, followed by the F-test (Tab. I, Fig. 4d).
Although the permutation of raw data within levels of factor B did have some power in
this situation, in contrast to the extreme results obtained using normal errors, this method
was still severely lacking in power compared to all other approaches (Fig. 4d). This
method was also the least powerful when either uniform or lognormal errors were simulated
(Tab. I).

7 DISCUSSION

We have provided a guideline that indicates, on the basis of expected mean squares, the con-
struction of an exact permutation test for individual terms in ANOVA models. This may
include permutation of groups of units as well as restricted permutations within levels of
factors. We have provided examples for two-way ANOVA designs that demonstrate
how the exact tests and various approximate permutation methods can be done and we
have compared their power empirically for these two-way designs using simulations.

Results from simulations have shown that, in general, when errors were either normal or
uniformly distributed (both symmetric distributions), the normal-theory F-test (using tradi-
tional tabled values) provided the most powerful test, in addition to maintaining correct
type I error. However, when errors were lognormal or exponential cubed (both right-skewed
distributions), permutation of residuals under a reduced model (e.g., Still and White, 1981;
Freedman and Lane, 1983) provided the most powerful test, while maintaining type I error,
for virtually all situations with crossed designs. The exception to this was the test of a fixed
factor in the presence of a non-zero interaction in a mixed model. Here, as for the nested
designs with such error distributions, the exact test was best for maintaining type I error
and having reasonable power.

Restricted permutation methods virtually always resulted in tests with very low power.
Relatively low power for restricted permutations was also found by Gonzalez and Manly
(1998). The fact that permutation of residuals provided greater power than restricted permu-
tations for ANOVA designs challenges the current wisdom with regard to appropriate permu-
tation procedures. We hasten to add that this result was not caused by the number of restricted
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permutations being too few to obtain reasonable power. For example, in our simulations, the
number of possible restricted permutations for the test of A in the fixed model was
2.52 x 10% and for the mixed model was 5.71 x 103+,

The above observations on restricted permutations apply to all tests of ANOVA terms
where the denominator mean square is the residual mean square. Whenever the denominator
mean square for the test of the term of interest is not the residual, then this indicates the
exchangeable units for the test. These exchangeable units must be used for such tests in
order to avoid bias in type I error. This applies, for example, in the case of the test of a higher
ranked factor in a nested hierarchy. The units induced by the nested factor must be used as the
exchangeable units for the test. It also applies in the case of a test for a significant fixed main
effect over any interaction effects in a mixed model. Here, the ab units must be permuted for
the test. It is important to note that in these situations, none of the approximate permutation
methods should be used which do not permute these exchangeable units, as they do not main-
tain accurate type I error in all situations.

The bottom line from these simulations is that one must control for other terms in the
model that are of higher order (e.g. of lower rank in a hierarchy), where this is necessary,
by permuting appropriate units, which may not be the individual observation units. To control
for terms that are of the same or lower order, in contrast, one generally has the option of
permuting residuals or of permuting within levels of those factors. The latter will give an
exact test while permuting residuals generally results in greater power and good type I
error, provided the correct exchangeable units are used.

The specific situation of a test for a significant main effect (A) in the presence of an
interaction in a mixed model deserves some more attention here. It was found that restricting
permutations within levels of the random factor (B) resulted in no rejections of the null
hypothesis, for normal errors (Tab. III, Fig. 4c). Similarly, virtually no rejections occurred
for either lognormal or uniform error distributions in this situation. Why should this method
of permutation have such low power? When there is significant variability due to an interac-
tion, restricting permutations within levels of B causes the mean square of A, on average, to
be inflated under permutation when the interaction effect is not controlled in any way. Thus,
the expected value of the mean square of A under permutation is, on average, too large,
causing the distribution of the F-statistic under permutation to be shifted to the right
(Fig. 5). This means the observed value does not appear extreme relative to this distribution
under permutation as frequently as it should, individual P-values tend to be over-estimated
and the resulting distribution of P-values is no longer uniform (Fig. 5). So, type I error
does not equal « (it is too small) and power is compromised, sometimes severely. Further
work is certainly necessary to clarify the role of restrictions in changing the distribution of
relevant test statistics under permutation. The above explanation (along with Fig. 5)
appears to provide at least some insight into this problem, although we do not pursue it
further here.

Certain trade-offs attend the use of an exact test versus permutation of residuals. The exact
test obviously ensures that type I error will be maintained at the chosen significance level (o).
While the type I error of a permutation test using residuals asymptotically approaches this
nominal level, even by using radically non-normal errors we were not able to simulate a situa-
tion where permutation of residuals resulted in inflated type I error, provided the appropriate
denominator units were permuted for the test. Our results are consistent with empirical
results obtained for the method of permutation of residuals described by Freedman and
Lane (1983) for multiple regression (Anderson and Legendre, 1999). In addition, there are
some terms in ANOVA models for which no exact test could ever be constructed. If a per-
mutational approach is to be used in these situations, an approximate permutation test must
be chosen.
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a) Distribution of the F-statistic under permutation

350 T
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b) Distribution of P-values under simulation
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FIGURE 5 Comparison of the distribution of the F-statistic under permutation (there were 999 permutations) and
the distribution of P-values under simulation (1000 simulations) for two permutation methods, denoted as in previous
figures. The null hypothesis was true and the data were simulated according to a two-way mixed model with
a=4,b=4,n=10,¢~ N(0,1),05 =0 and g = 1.

Unrestricted permutation of raw data had significantly less power than permutation of resi-
duals and also suffered from inflated type I error in the test of a higher ranked factor in a
nested hierarchical design (Section 4.2). Although it can provide a reasonable, if somewhat
conservative, approximate test (Gonzalez and Manly, 1998), it cannot be used where indivi-
dual units are not the correct exchangeable units (i.e., when the denominator mean square for
the test is not the residual mean square).

For reference, we provide tables in an Appendix (Tabs. AI-AIV) that show how exact
tests can be constructed for individual terms in ANOVA for two-way and three-way designs.
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The tables also indicate which terms need to be “removed” (through subtraction of cell
means) for the approximate test provided by permutation of residuals. They also indicate
the situations for which no exact test can be constructed.

We have taken the philosophy here that any ANOVA designed experiment can be analyzed
using a permutation test approach, provided due care is given to identifying nested structures
and whether individual factors are fixed or random. It is worth noting that the whole notion of
treating a factor as “random” might be considered by some as an anathema in the permuta-
tion context [i.e., see Manly (1997), Section 7.6, pp. 142—143]. In that framework, the obser-
vations as well as any levels of any factors are considered fixed by necessity. This is so
because this approach considers randomization tests to obtain their validity by virtue of ran-
dom assignment of units to combinations of treatments, with the tests being conditional on
the factor levels actually included in the experiment, regardless of how levels were chosen.

In contrast, our approach, as stated in the introduction, is that permutation tests gain their
validity by virtue of exchangeability of errors under the null hypothesis. This allows for the
possibility of there being more than just the errors associated with individual units as possible
sources of variability under the null hypothesis, including random interaction terms or nested
factors.

Regardless of which philosophical approach an experimenter chooses to take, we have
shown here using simulations that taking an approach which ignores expected mean squares
in the construction of a test statistic or in the choice of exchangeable units for the test can
have undesirable consequences.

Although the experimenter has some choices in the use of permutation tests for complex
designs in ANOVA, permutations must not be done indiscriminately or without thought as to
the nature of the factors and the structure of the design. The logic attending parametric pro-
cedures in ANOVA applies to permutation strategies also, in terms of the expected mean
squares, the pivotal F-statistic used for the test and the way in which the permutations are
to be done. The guideline we provide for the construction of exact tests is consistent with
the traditional rules applied in parametric ANOVA and is driven by the logic of the experi-
mental design and the expected mean squares of individual terms. As for parametric tests, the
proper logic of experimental design and analysis must be observed with care for valid tests of
hypotheses to be obtained using permutations.

The guideline we have provided here has great utility for choosing appropriate permutation
strategies for the analysis of multivariate data in complex ANOVA designs (e.g., ter Braak
and Smilauer, 1998; Anderson, 2001). For multivariate data, different variables within the
same data set may often have different kinds of distributions, thus making the use of
GLMs and other related approaches unfeasible. In contrast, permutation tests based on dis-
tance matrices are quite robust in this situation and can be done using the appropriate permu-
tation procedures as described here (e.g., McArdle and Anderson, 2001).

We have not discussed the potential use of permutation methods with more robust
statistics, such as for tests of medians or using least absolute deviations (e.g., see
Cade and Richards, 1996) rather than least-squares. For univariate data with highly skewed
distributions, such approaches may well be more appropriate than using permutation
methods with the traditional F-ratios. We propose, however, that the same issues we have
addressed here (e.g., the choice of exchangeable units and the choice of whether or not to
restrict permutations and/or permute residuals) will still be very important to consider in
order to develop appropriate permutation distributions for tests in complex ANOVA
designs, regardless of the kind of statistic used. It is clear that further work in this area is
necessary, including by reference to the utility and relative power of such approaches
compared to, for example, GLMs or GLMMs (e.g., Breslow and Clayton, 1993) in different
situations.
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8 CONCLUSION

We summarize and conclude our results by briefly answering questions (a) through (f) posed
in the Introduction:

(a) Should raw data be permuted or some form of residuals? To obtain an exact test, per-
mutation of raw data can be done using the guideline according to the ANOVA model (i.e.,
permuting appropriate exchangeable units and restrictions within levels of other factors).
Permuting the correct exchangeable units is not optional, but mandatory to maintain level
accuracy. Having identified the appropriate exchangeable units, however, one generally
then has the choice of whether to further restrict permutations (to accomplish an exact
test) or to permute residuals. Our results indicate that permutation of residuals will have
power that is greater than (or equal to) the exact test, while maintaining type I error. We there-
fore recommend permutation of residuals for general applications. Indeed, in situations where
an exact test is impossible, permutation of residuals may give the most powerful and reliable
approximate test.

(b) Which units should be permuted? Exchangeable units for the test are identified by the
denominator mean square of the F-ratio for the test as determined by expected mean squares.

(¢) When should permutations be restricted to occur within levels of other factors? When
there are factors of similar or lower order, these may be taken into account by restricting per-
mutations within their levels for an exact test. The alternative to such restrictions (yielding an
approximate test, generally with greater power) is to permute residuals of those factors.

(d) How can interaction terms be tested using permutations? No general exact test exists
using the F-ratio. Permuting the residuals of main effects provides a powerful and valid
approximate permutation test for interaction terms.

(e) Which tests are exact and which are approximate? A test is exact when its type I error
is exactly equal to the a priori significance level chosen for the test. Tests are approximate
(asymptotically exact) when their type I error asymptotically approaches the a priori signifi-
cance level chosen for the test. Permutation of any kind of residuals will always give appro-
ximate tests. Exact tests are those constructed using the guideline.

(f) What test statistic should be used? A pivotal statistic, such as F, is necessary for the
approximate permutation tests in complex ANOVA designs (e.g., Anderson and Robinson,
2001). For the exact tests, there are simpler statistics, such as the sum of squares or mean
square, that are monotonically related to the F-ratio, thus yielding equivalent P-values
under permutation (e.g., Edgington, 1995). As the F-ratio has an immediately familiar and
interpretable meaning, however, we recommend its use for any test by permutation in
ANOVA.
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MULTI-FACTORIAL ANALYSIS OF VARIANCE
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