

Informing the regulation of sediment in streams: determining natural rates of sediment generation in economically important landscapes

Societies are dependent on access to abundant, clean water. Sediment, a non-point source pollutant, has been identified as a major cause of impairment in United States water bodies (USEPA, 2000; Chao et al., 2007). Sediment affects water quality both physically and chemically. High turbidity increases reflected heat, decreasing water temperature (Ryan, 1991). Filtration and chemical treatment for sediment removal increase water treatment costs (Holmes, 1988). Material adsorbed to sediment can desorb and trigger chemical changes in streams (Pintilie et al., 2007); for example, heavy minerals, bacteria, and organic matter can reach water bodies adhered to sediment and change water chemistry; sediment-associated organic matter can lower dissolved oxygen levels (Bilotta and Brazier, 2008).

Sediment is sourced from erosion at both the watershed scale and from channel banks (Trimble, 1997). There are several pathways by which sediment reaches streams: overland flow, channel and bank erosion, and mass wasting (Randhir and Hawes, 2009). Although erosion rates (and thus rates of sediment supply to watersheds) are related to natural factors, such as geology and climate, accelerated erosion is often triggered by human activities (Douglas, 1969; Ouyang et al., 2010). Deforestation, development, agriculture, and the increase of impervious surfaces in watersheds can significantly increase erosion and sediment loading to streams and rivers (Foley et al., 2005; Marshall and Shortle, 2005).

Methods for quantifying erosion (and sediment generation) have evolved from measuring the volume of sediment deposited in standing water and normalizing by area draining to the sampling point (Judson, 1968), to the measurement of suspended solids carried by a stream (Judson and Ritter, 1968), to isotopic methods such as the use of cosmogenic nuclides (Bierman and Nichols, 2004). During the 1990s, cosmogenic isotopes emerged as the premier method to estimate long-term or background erosion rates from sediment (Bierman, 1994'; Bierman and Steig, 1996; Brown et al., 1995; Granger et al., 1996). Cosmogenic isotopes are formed when rocks and sediment are exposed to cosmic rays (Lal and Peters, 1967). As a result of this interaction, isotopes, such as ^{10}Be , accumulate in rock and soil. Production of these isotopes decreases exponentially with depth and is in general inconsequential below 2 meters depth in rocks (Lal and Peters, 1967). Because of this, ^{10}Be is a good indicator of the near-surface residence time of materials - hence, the rate at which earth surface is eroding. Cosmogenic nuclides provide a robust method to quantify erosion rates, because they integrate enough time to average out extreme events on centennial time scales. These isotopes have the potential to provide long-term data that can help place human influences on the landscape and its processes in context (Bierman and Nichols, 2004; von Blackenburg, 2005).

^{10}Be has been widely used as a proxy of long term erosion rates. However, as Portenga and Bierman (2011) showed, there are still areas where no cosmogenic nuclide analysis has been done (Figure 1) and thus long-term, background rates of erosion and sediment generation are poorly, if at all, constrained.

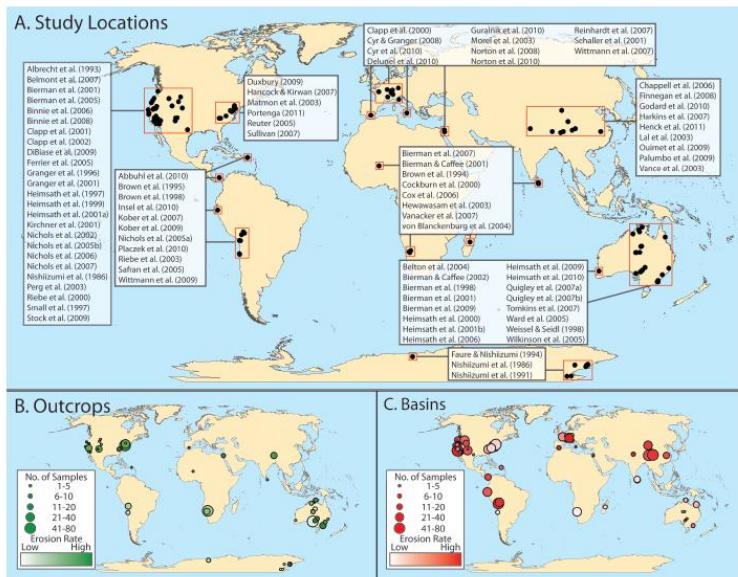


Figure 1: Geographical distribution of cosmogenic ^{10}Be erosion rate data, from Portenga and Bierman, 2011. (A) Location of studies compiled in the paper, (B) distribution of outcrop samples and (C) drainage basin samples.

My PhD will determine background erosion rates in areas of the United States and Brazil that are important for economical and environmental reasons (the agricultural midwestern US, the Pacific Northwest where salmon fisheries are important, and the Atlantic Highlands of Brazil where both forestry and agriculture are economically critical). I will integrate GIS and cosmogenic nuclide analysis to determine background rates of sediment generation and relate these rates to landscape metrics such as slope, elevation, and vegetation communities. Knowledge of background or natural sediment generation rates is key for responsible environmental management, in particular when determining Total Maximum Daily Loads (TMDLs). These loads, a regulatory goal, must be set so that they are consistent with sediment loads supplied by natural systems before human intervention and land development. For prediction of sediment loads in unsampled watersheds, it is important to know how geographical factors such as topography, climate and rock type correlate with sediment generation rates. I will use one summer each for field work (sample collection) in the US and Brazil. Work in Brazil will be facilitated by my advisor's existing collaborations with hydrologists at the Federal University of Rio Di Janeiro. The Brazil portion of my research will provide the cross-cultural experiences I need to become a competent scientist with a global view of the environment. According to Nerad and Cerny (2002), the next generation of researchers are expected not only to acquire traditional academic research competencies and professional skills but also multi-cultural competencies in order to work and function in a world of international teams in a global setting.

The midwestern United States, where agriculture is an important economic activity (Paggi et al., 2011), is one of the regions where little cosmogenic nuclide analysis of background sediment generation rates has been done; yet, there are clear indications that agricultural activity has impacted water quality by increasing nutrient and sediment loading (Tong and Chen, 2002). Quantification of background sediment

generation rates in this region is critical because these rates represent the amount of sediment that the landscape produces naturally and which streams can transport without altering system function.

The Pacific Northwest region of the United States possess invaluable habitat for salmon. Spawning habitat can be jeopardized by increased sediment loads in rivers (Soulsby et al., 2001), which are directly related to erosion at the watershed level. Sedimentation can also reduce salmonid fish egg survival (Wilber and Clarke, 2001). Forestry practices have increased sediment loads and degraded water quality in the region because of tree removal and the infrastructure needed to move logs (Church and Eaton, 2001). Lowering sediment loads back to pre-anthropogenic levels is needed for stream and aquatic systems restoration (Stouder et al., 1997). Measuring background sediment generation rates at the regional scale is the first step for informed land management. A transect along the western US coast, stretching from Oregon to northern California, was sampled by my collaborators and I have been extracting ^{10}Be from these samples. I will use these data to explore spatial distribution of erosion along the northwest coast, exploring its potential environmental effects, and providing fundamental data for TMDLs and other means of regulating sediment discharge in the area.

A third gap in ^{10}Be -derived sediment generation rates is the heavily settled and productive Atlantic highlands of Brazil, a developing nation. Here, intensive agriculture and forestry threaten the environment, economy, and stream health. The Atlantic highlands are intensively farmed, and the site of significant forestry activity but the areas relies on clean water for the tourism economy, in particular, the beaches to which rivers discharge. Fieldwork and a semester residency in Brazil brings the opportunity to learn another culture, language, and to consider the impact of agricultural activity on food security issues.

Geographical Information Systems (GIS) are helpful tools for environmental assessment, because they provide a means to display geographic data and explore the spatial distribution of an environmental phenomenon and identify impacted areas. GIS makes it easy to quantify landscape-level variables (i.e.: elevation, slope, watershed area), extract information from digital images (flow direction, watershed delineation, among others), and perform spatial analysis over large areas. I will integrate GIS with field work and clean room laboratory work to quantify erosion rates and relate them to physiography. Interpretations of my results will take into account economic factors such as tourism, salmon fishing and export, and agriculture.

My work, providing cosmogenic-derived erosion rates for environmentally sensitive and economically important areas will be a significant contribution to Environmental science; specifically, my work will provide the data needed to set regulatory thresholds for sediment delivery from disturbed systems. Portenga and Bierman (2011) concluded that erosion rates, and thus sediment generation rates, can be predicted more accurately at regional rather than global scales – thus the need for more fieldwork and isotopic analysis. Publication of my data will benefit several disciplines including water quality research, land use practice decisions, and natural resources management. My research will shed some light on the interactions between environment, society, and economy from a sediment generation perspective.

My master's coursework and research provided skills that are invaluable for success of the interdisciplinary project I will pursue for my doctorate -- specifically, extensive coursework in spatial analysis, projects in community managed natural resources, and laboratory skills gained over the last 18 months. My advisor has a broad view of geomorphology and natural resources and how they integrate. His research in many places (including the US, Namibia, South Africa, Brazil, Madagascar, Greenland and New Zealand) have given him an interdisciplinary and global view of the environment that I will keep learning from while working on my PhD. He runs a state-of-the-art cosmogenic nuclide laboratory and coordinates a research group in which there are varied interests, but everyone shares a willingness to collaborate. The University of Vermont's doctoral degree in Natural Resources allows interdisciplinary research while emphasizing teaching ability and cross-cultural aptitude. The integration of such important skills for the next generation of environmental scientists and resource managers makes UVM's PhD program unique. The University of Vermont's Gund Institute for Ecological Economics and its personnel will be a critical resource as I explore the connection between soil erosion and economic forces.

References:

Bierman, P.R., 1994. Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: A review from the geomorphic perspective. *Journal of Geophysical Research*, 99 (B7): 13885-13896

Bierman, P., and Nichols, K.K., 2004. Rock to sediment –slope to sea with ^{10}Be - Rates of landscape change. *Annual Review of Earth and Planetary Sciences*, 32:215-255

Bierman, P. and Steig, E.J., 1996. Estimating rates of denudation using cosmogenic isotope abundances in sediment. *Earth surface processes and landforms*, 21: 125-139

Bilotta, G.S., and Brazier, R.E., 2008. Understanding the influence of suspended solids on water quality and aquatic biota. *Water Research*, 42: 2849-2861

Brown, E.T., Stallard, R.F., Larsen, M.C., Raisbeck, G.M., and Yiou, F., 1995. Denudation rates determined from the accumulation of in-situ produced ^{10}Be in the Luquillo Experimental Forest, Puerto Rico. *Earth and Planetary Science Letters*, 129: 193-202

Chao, X., Jia, Y., Shields, F.D., Wang, S.S.Y., and Cooper, C.M., 2007. Numerical modeling of water quality and sediment related processes. *Ecological modeling*, 201 (3-4): 385-397

Church, M. and Eaton, B., 2001. Hydrological effects of Forest Harvest in the Pacific Northwest. *Riparian Decision Tool Technical Report #3*.

Douglas, I., 1969. The efficiency of Humid tropical denudation systems. *Transactions of the Institute of British Geographers*, 46: 1-16

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Stuart, F., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Colin, I., Ramankutty, N. and Snyder, P.K., 2005. Global Consequences of Land Use. *Science*, 309: 570-574

Granger, D.E., Kirchner, J.W., and Finkel, R., 1996. Spatially averaged long-term erosion rates measured from in-situ produced cosmogenic nuclides in alluvial sediment. *The Journal of Geology*, 104: 249-257

Holmes, T.P., 2008. The offsite impact of soil erosion on the water treatment industry. *Land economics*, 64 (4): 356-366.

Judson, S., and Ritter, D.F., 1964. Rates of regional denudation in the United States. *Journal of Geophysical Research*, 69(16): 3395-3401

Judson, S., 1968. Erosion of the land, or what's happening to our Continents?. *American Scientist*, 56(4): 356-374

Lal, D. and Peters, B., 1967. Cosmic ray produced radioactivity on the Earth, in Sitte, K., ed. *Handbuch der Physik*: New York, Springer-Verlag: 551-612

Marshall, E. and Shortle, J.S., 2005. Urban development impacts on ecosystems. Chapter 7 in Goetz, S.J., J.S. Shortle and J.C. Bergstrom (eds.), *Land Use Problems and Conflicts: Causes,*

Consequences and Solutions, Routledge Research in Environmental Economics: London and New York: 79-93.

Nerad, M, & Cerny, J. 2002. Postdoctoral appointments and employment patterns of science and engineering doctoral recipients after Ph.D. completion: Selected results from the 'Ph.D.s--Ten Years Later' study. Council of Graduate Schools Communicator, pp. 1-11.

Ouyang, W., Skidmore, A.K., Hao, F. and Wang, T., 2010. Soil erosion dynamics response to landscape pattern. *Science of the Total Environment*, 408: 1358-1366.

Paggi, M.S., Rosson, C.P., Adcock, F.J. and Hanselka, D., 2011. National and Regional impacts of the U.S. Agricultural exports. *Choices: the magazine of food, farm and resource issues*, 26 (1)

Pintilie, S., Brânză, L., Bețianu, C., Pavel, L. V., Ungureanu, F., and Gavrilescu, M., 2007. Modeling and simulation of heavy metals transport in water and sediments. *Environmental Engineering and Management Journal*, 6 (2): 153-161

Portenga, E.W. and Bierman, P.R., 2011. Understanding Earth's eroding surface with ¹⁰Be. *GSA Today* 21 (8): 4-10.

Randhir, T.O. and Hawes, A.G., 2009. Watershed land use and aquatic ecosystem response: Ecohydrologic approach to conservation policy. *Journal of Hydrology*, 364: 182-199

Ryan, P.A., 1991. Environmental effects of sediment on New Zealand streams: a review. *New Zealand Journal of Marine and Freshwater Research*, 25: 207-221

Soulsby, C., Youngson, A.F., Moir, H.J. and Malcolm, I.A., 2001. Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment. *The Science of the Total Environment*, 265: 295-307

Stouder, D.J., Bisson, P.A., and Naiman, R.J., 1997. Pacific salmon & their ecosystems: status and future options. Springer, 685 pp.

Tong S. T. and Chen, W., 2002. Modeling the relationship between land use and surface water quality. *Journal of Environmental Management*, 66: 377-393.

Trimble, S.W., 1997. Contribution of stream channel erosion to sediment yield from an urbanizing watershed. *Science*, 278: 1442-1444

U.S. Environmental Protection Agency, 2000. Stressor identification guidance document. EPA-822-B00-025

von Blackenburg, F., 2005. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. *Earth and Planetary Science Letters*, 234: 462-479

Wilber, D.W., and Clarke, D.G., 2001. Biological effects of suspended sediments: a review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. *North American Journal of Fisheries Management*, 21: 855-875

Sosa-Gonzalez, Veronica

U.S. Citizen

EPA-F2012-STAR-E3: Safe and Sustainable Water Resources: Water Quality--Hydrogeology and Surface Water (E3)

University of Vermont, Rubenstein School of the Environment and Natural Resources. Burlington, VT

University of Vermont, Rubenstein School of the Environment and Natural Resources. Burlington, VT

Informing the regulation of sediment in streams: determining natural rates of sediment generation in economically important landscapes

Doctoral, June 2015

Watershed science

Entering Doctoral Student (ED)

Personal Statement

With only one percent of the world's water available for human consumption, its sustainable use is a priority. Natural resources management is evolving from a science-based discipline to a cross-disciplinary realm integrating economics, science and the study of human-dominated landscapes. It's this new dimension of resources management that inspires me. I would like to use my scientific knowledge to reduce the gap between science and real world application by working with communities and giving them the tools to manage resources locally, for a positive regional outcome.

Community managed resources became important to me early in my undergraduate years. It began during my time at a community center back home where I tutored children in math and science. My community was affected by unequal economic development and its effects, when a stream was altered to build luxurious residences. It was then that I became aware of my desire to get involved in environmental education and communities. I explored my leadership by organizing and conducting activities for different educational levels and target populations (kids, teenagers, and adults).

Other experiences in science education have required leadership skills, which allowed me to polish my own. As an intern for the Vermont EPSCoR Streams Project in 2009, I led field sessions that highlighted the use and importance of a GPS and the usefulness of GIS in water quality research for high school students. This past summer I mentored two undergraduate students for the Streams Project. My involvement ranged from project design and sampling to data analysis and poster preparation. I was also an assistant faculty member for the Governor's Institute of Vermont: Environmental Science and Technology, a week-long residential learning program for highly motivated high school students. I guided field work sessions, laboratory sessions, and global environmental issues discussions. Even though grabbing the students' attention and involving them posed a challenge at the beginning, the experience was invaluable. I proved to myself that my ability to promote science education is one of my biggest assets. Leadership is a useful skill, but it does not stand on its own, it is best employed with collaborative efforts.

Team work was an everyday tool for field, laboratory and office work, when I was interning with the USGS. I collaborated on several projects during the internship, but my focus was on a project studying land use changes and their influences on river flow in Puerto Rico. Working as part of the Cosmogenic Nuclide Laboratory and Geomorphology Research Group, while attaining my Master degree, provided another opportunity to solidify my capabilities as a teammate. Communication, organization and shared allocation of tasks are common practice in the group, to guarantee quality research and data. Experiences that strengthen my collaborative

potential also improved my communication skills. Training incoming researchers in the Cosmogenic Nuclide Laboratory facilities, assisting at the Governor's Institute, mentoring undergraduates, and serving as a Teacher's Assistant for an undergraduate level laboratory provided opportunities to transfer knowledge in assertive ways.

Each of these experiences contributed in part to my decision to conduct research in water resource management and get involved in community-managed natural resources. My Master's program at UVM gives me a holistic perspective on resource management and the tools I need to connect the dots and discover ways to use my acquired skills. Communication skills, leadership, knowledge transfer potential, passion, laboratory work skills and discipline, combined to provide me the skill set for engaging in rigorous scientific research, and taking part in the creation of sustainable solutions for environmental problems. These sustainable solutions will only come from cross-disciplinary research and the community's involvement in applying solutions and decision making processes.

Informing the regulation of sediment in streams: determining natural rates of sediment generation in economically important landscapes

Societies are dependent on access to abundant, clean water. Sediment, a non-point source pollutant, has been identified as a major cause of impairment in United States water bodies (USEPA, 2000; Chao et al., 2007). Sediment affects water quality both physically and chemically. High turbidity increases reflected heat, decreasing water temperature (Ryan, 1991). Filtration and chemical treatment for sediment removal increase water treatment costs (Holmes, 1988). Material adsorbed to sediment can desorb and trigger chemical changes in streams (Pintilie et al., 2007); for example, heavy minerals, bacteria, and organic matter can reach water bodies adhered to sediment and change water chemistry; sediment-associated organic matter can lower dissolved oxygen levels (Bilotta and Brazier, 2008).

Sediment is sourced from erosion at both the watershed scale and from channel banks (Trimble, 1997). There are several pathways by which sediment reaches streams: overland flow, channel and bank erosion, and mass wasting (Randhir and Hawes, 2009). Although erosion rates (and thus rates of sediment supply to watersheds) are related to natural factors, such as geology and climate, accelerated erosion is often triggered by human activities (Douglas, 1969; Ouyang et al., 2010). Deforestation, development, agriculture, and the increase of impervious surfaces in watersheds can significantly increase erosion and sediment loading to streams and rivers (Foley et al., 2005; Marshall and Shortle, 2005).

Methods for quantifying erosion (and sediment generation) have evolved from measuring the volume of sediment deposited in standing water and normalizing by area draining to the sampling point (Judson, 1968), to the measurement of suspended solids carried by a stream (Judson and Ritter, 1968), to isotopic methods such as the use of cosmogenic nuclides (Bierman and Nichols, 2004). During the 1990s, cosmogenic isotopes emerged as the premier method to estimate long-term or background erosion rates from sediment (Bierman, 1994'; Bierman and Steig, 1996; Brown et al., 1995; Granger et al., 1996). Cosmogenic isotopes are formed when rocks and sediment are exposed to cosmic rays (Lal and Peters, 1967). As a result of this interaction, isotopes, such as ^{10}Be , accumulate in rock and soil. Production of these isotopes decreases exponentially with depth and is in general inconsequential below 2 meters depth in rocks (Lal and Peters, 1967). Because of this, ^{10}Be is a good indicator of the near-surface residence time of materials - hence, the rate at which earth surface is eroding. Cosmogenic nuclides provide a robust method to quantify erosion rates, because they integrate enough time to average out extreme events on centennial time scales. These isotopes have the potential to provide long-term data that can help place human influences on the landscape and its processes in context (Bierman and Nichols, 2004; von Blackenburg, 2005).

^{10}Be has been widely used as a proxy of long term erosion rates. However, as Portenga and Bierman (2011) showed, there are still areas where no cosmogenic nuclide analysis has been done (Figure 1) and thus long-term, background rates of erosion and sediment generation are poorly, if at all, constrained.

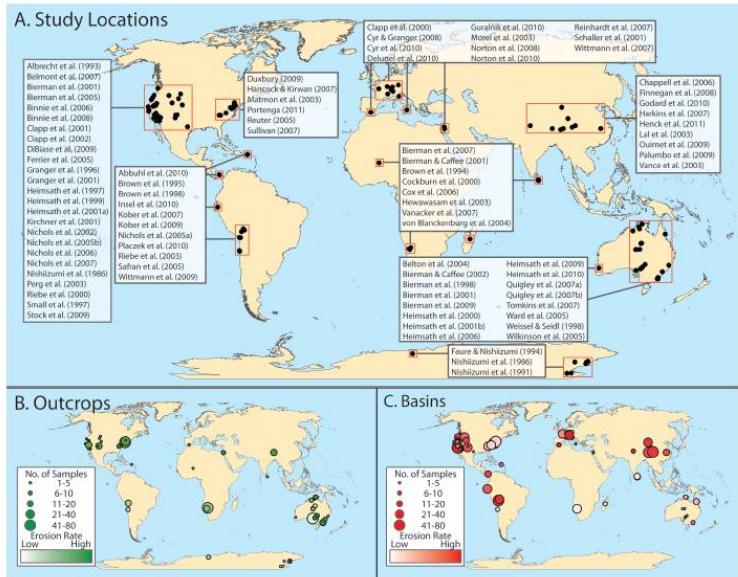


Figure 1: Geographical distribution of cosmogenic ^{10}Be erosion rate data, from Portenga and Bierman, 2011. (A) Location of studies compiled in the paper, (B) distribution of outcrop samples and (C) drainage basin samples.

My PhD will determine background erosion rates in areas of the United States and Brazil that are important for economical and environmental reasons (the agricultural midwestern US, the Pacific Northwest where salmon fisheries are important, and the Atlantic Highlands of Brazil where both forestry and agriculture are economically critical). I will integrate GIS and cosmogenic nuclide analysis to determine background rates of sediment generation and relate these rates to landscape metrics such as slope, elevation, and vegetation communities. Knowledge of background or natural sediment generation rates is key for responsible environmental management, in particular when determining Total Maximum Daily Loads (TMDLs). These loads, a regulatory goal, must be set so that they are consistent with sediment loads supplied by natural systems before human intervention and land development. For prediction of sediment loads in unsampled watersheds, it is important to know how geographical factors such as topography, climate and rock type correlate with sediment generation rates. I will use one summer each for field work (sample collection) in the US and Brazil. Work in Brazil will be facilitated by my advisor's existing collaborations with hydrologists at the Federal University of Rio Di Janeiro. The Brazil portion of my research will provide the cross-cultural experiences I need to become a competent scientist with a global view of the environment. According to Nerad and Cerny (2002), the next generation of researchers are expected not only to acquire traditional academic research competencies and professional skills but also multi-

cultural competencies in order to work and function in a world of international teams in a global setting.

The midwestern United States, where agriculture is an important economic activity (Paggi et al., 2011), is one of the regions where little cosmogenic nuclide analysis of background sediment generation rates has been done; yet, there are clear indications that agricultural activity has impacted water quality by increasing nutrient and sediment loading (Tong and Chen, 2002). Quantification of background sediment generation rates in this region is critical because these rates represent the amount of sediment that the landscape produces naturally and which streams can transport without altering system function.

The Pacific Northwest region of the United States possess invaluable habitat for salmon. Spawning habitat can be jeopardized by increased sediment loads in rivers (Soulsby et al., 2001), which are directly related to erosion at the watershed level. Sedimentation can also reduce salmonid fish egg survival (Wilber and Clarke, 2001). Forestry practices have increased sediment loads and degraded water quality in the region because of tree removal and the infrastructure needed to move logs (Church and Eaton, 2001). Lowering sediment loads back to pre-anthropogenic levels is needed for stream and aquatic systems restoration (Stouder et al., 1997). Measuring background sediment generation rates at the regional scale is the first step for informed land management. A transect along the western US coast, stretching from Oregon to northern California, was sampled by my collaborators and I have been extracting ^{10}Be from these samples. I will use these data to explore spatial distribution of erosion along the northwest coast, exploring its potential environmental effects, and providing fundamental data for TMDLs and other means of regulating sediment discharge in the area.

A third gap in ^{10}Be -derived sediment generation rates is the heavily settled and productive Atlantic highlands of Brazil, a developing nation. Here, intensive agriculture and forestry threaten the environment, economy, and stream health. The Atlantic highlands are intensively farmed, and the site of significant forestry activity but the areas relies on clean water for the tourism economy, in particular, the beaches to which rivers discharge. Fieldwork and a semester residency in Brazil brings the opportunity to learn another culture, language, and to consider the impact of agricultural activity on food security issues.

Geographical Information Systems (GIS) are helpful tools for environmental assessment, because they provide a means to display geographic data and explore the spatial distribution of an environmental phenomenon and identify impacted areas. GIS makes it easy to quantify landscape-level variables (i.e.: elevation, slope, watershed area), extract information from digital images (flow direction, watershed delineation, among others), and perform spatial analysis over large areas. I will integrate GIS with field work and clean room laboratory work to quantify

erosion rates and relate them to physiography. Interpretations of my results will take into account economic factors such as tourism, salmon fishing and export, and agriculture.

My work, providing cosmogenic-derived erosion rates for environmentally sensitive and economically important areas will be a significant contribution to Environmental science; specifically, my work will provide the data needed to set regulatory thresholds for sediment delivery from disturbed systems Portenga and Bierman (2011) concluded that erosion rates, and thus sediment generation rates, can be predicted more accurately at regional rather than global scales – thus the need for more fieldwork and isotopic analysis. Publication of my data will benefit several disciplines including water quality research, land use practice decisions, and natural resources management. My research will shed some light on the interactions between environment, society, and economy from a sediment generation perspective.

My master's coursework and research provided skills that are invaluable for success of the interdisciplinary project I will pursue for my doctorate -- specifically, extensive coursework in spatial analysis, projects in community managed natural resources, and laboratory skills gained over the last 18 months. My advisor has a broad view of geomorphology and natural resources and how they integrate. His research in many places (including the US, Namibia, South Africa, Brazil, Madagascar, Greenland and New Zealand) have given him an interdisciplinary and global view of the environment that I will keep learning from while working on my PhD. He runs a state-of-the-art cosmogenic nuclide laboratory and coordinates a research group in which there are varied interests, but everyone shares a willingness to collaborate. The University of Vermont's doctoral degree in Natural Resources allows interdisciplinary research while emphasizing teaching ability and cross-cultural aptitude. The integration of such important skills for the next generation of environmental scientists and resource managers makes UVM's PhD program unique. The University of Vermont's Gund Institute for Ecological Economics and its personnel will be a critical resource as I explore the connection between soil erosion and economic forces.

References:

Bierman, P.R., 1994. Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: A review from the geomorphic perspective. *Journal of Geophysical Research*, 99 (B7): 13885-13896

Bierman, P., and Nichols, K.K., 2004. Rock to sediment –slope to sea with ^{10}Be - Rates of landscape change. *Annual Review of Earth and Planetary Sciences*, 32:215-255

Bierman, P. and Steig, E.J., 1996. Estimating rates of denudation using cosmogenic isotope abundances in sediment. *Earth surface processes and landforms*, 21: 125-139

Bilotta, G.S., and Brazier, R.E., 2008. Understanding the influence of suspended solids on water quality and aquatic biota. *Water Research*, 42: 2849-2861

Brown, E.T., Stallard, R.F., Larsen, M.C., Raisbeck, G.M., and Yiou, F., 1995. Denudation rates determined from the accumulation of in-situ produced ^{10}Be in the Luquillo Experimental Forest, Puerto Rico. *Earth and Planetary Science Letters*, 129: 193-202

Chao, X., Jia, Y., Shields, F.D., Wang, S.S.Y., and Cooper, C.M., 2007. Numerical modeling of water quality and sediment related processes. *Ecological modeling*, 201 (3-4): 385-397

Church, M. and Eaton, B., 2001. Hydrological effects of Forest Harvest in the Pacific Northwest. *Riparian Decision Tool Technical Report #3*.

Douglas, I., 1969. The efficiency of Humid tropical denudation systems. *Transactions of the Institute of British Geographers*, 46: 1-16

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Stuart, F., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Colin, I., Ramankutty, N. and Snyder, P.K., 2005. Global Consequences of Land Use. *Science*, 309: 570-574

Granger, D.E., Kirchner, J.W., and Finkel, R., 1996. Spatially averaged long-term erosion rates measured from in-situ produced cosmogenic nuclides in alluvial sediment. *The Journal of Geology*, 104: 249-257

Holmes, T.P., 2008. The offsite impact of soil erosion on the water treatment industry. *Land economics*, 64 (4): 356-366.

Judson, S., and Ritter, D.F., 1964. Rates of regional denudation in the United States. *Journal of Geophysical Research*, 69(16): 3395-3401

Judson, S., 1968. Erosion of the land, or what' happening to our Continents?. *American Scientist*, 56(4): 356-374

Lal, D. and Peters, B., 1967. Cosmic ray produced radioactivity on the Earth, in Sitte, K., ed. *Handbuch der Physik*: New York, Springer-Verlag: 551-612

Marshall, E. and Shortle, J.S., 2005. Urban development impacts on ecosystems. Chapter 7 in Goetz, S.J., J.S. Shortle and J.C. Bergstrom (eds.), *Land Use Problems and Conflicts: Causes,*

Consequences and Solutions, Routledge Research in Environmental Economics: London and New York: 79-93.

Nerad, M, & Cerny, J. 2002. *Postdoctoral appointments and employment patterns of science and engineering doctoral recipients after Ph.D. completion: Selected results from the 'Ph.D.s--Ten Years Later' study*. Council of Graduate Schools Communicator, pp. 1-11.

Ouyang, W., Skidmore, A.K., Hao, F. and Wang, T., 2010. Soil erosion dynamics response to landscape pattern. *Science of the Total Environment*, 408: 1358-1366.

Paggi, M.S., Rosson, C.P., Adcock, F.J. and Hanselka, D., 2011. National and Regional impacts of the U.S. Agricultural exports. *Choices: the magazine of food, farm and resource issues*, 26 (1)

Pintilie, S., Brânză, L., Bețianu, C., Pavel, L. V., Ungureanu, F., and Gavrilescu, M., 2007. Modeling and simulation of heavy metals transport in water and sediments. *Environmental Engineering and Management Journal*, 6 (2): 153-161

Portenga, E.W. and Bierman, P.R., 2011. Understanding Earth's eroding surface with ^{10}Be . *GSA Today* 21 (8): 4-10.

Randhir, T.O. and Hawes, A.G., 2009. Watershed land use and aquatic ecosystem response: Ecohydrologic approach to conservation policy. *Journal of Hydrology*, 364: 182-199

Ryan, P.A., 1991. Environmental effects of sediment on New Zealand streams: a review. *New Zealand Journal of Marine and Freshwater Research*, 25: 207-221

Soulsby, C., Youngson, A.F., Moir, H.J. and Malcolm, I.A., 2001. Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment. *The Science of the Total Environment*, 265: 295-307

Stouder, D.J., Bisson, P.A., and Naiman, R.J., 1997. Pacific salmon & their ecosystems: status and future options. Springer, 685 pp.

Tong S. T. and Chen, W., 2002. Modeling the relationship between land use and surface water quality. *Journal of Environmental Management*, 66: 377-393.

Trimble, S.W., 1997. Contribution of stream channel erosion to sediment yield from an urbanizing watershed. *Science*, 278: 1442-1444

U.S. Environmental Protection Agency, 2000. Stressor identification guidance document. EPA-822-B00-025

von Blackenburg, F., 2005. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment. *Earth and Planetary Science Letters*, 234: 462-479

Wilber, D.W., and Clarke, D.G., 2001. Biological effects of suspended sediments: a review of suspended sediment impacts on fish and shellfish with relation to dredging activities in estuaries. *North American Journal of Fisheries Management*, 21: 855-875

Background information

Education

- University of Vermont, Burlington, VT
2010-Present
M.S. in Natural Resources
Advisor: Paul Bierman
- Universidad de Puerto Rico, San Juan, PR
2005-2010
B.S. in Environmental Sciences
Cum Laude
Advisors: Jorge R. Ortiz-Zayas and José A. Molinelli

Experience

- Teaching Assistantship
University of Vermont, Burlington, VT
Fall 2011-Spring 2012
Leading laboratory and field sessions, facilitating water and soil samples analysis, grading laboratory reports and oral presentations
- Research Assistanship
University of Vermont, Burlington, VT
Fall 2010-Summer 2011
Quartz extraction and purification, ¹⁰Be extraction from quartz, sample preparation for Accelerator Mass Spectrometry analysis
- Streams Project mentoring
Vermont EPSCoR, Burlington, VT
May 2011-August 2011
Advise undergrad students, help in their project and sampling design, help in field work and sampling, Guide them on their poster preparation and presentation
- Governor's Institute of Vermont
Burlington, VT
June 19-25, 2011
Leading field and laboratory work sessions, organizing and leading global environmental issues discussions
- Intern
March-July 2010 USGS, Guaynabo, PR

Water quality sampling, updating water quality database, digitizing maps using ArcGIS

- Intern
May-August 2009 VT EPSCoR Streams Project, Burlington, VT
Research on water quality trends using ArcGIS, conducting field sessions for high school students, guiding educational sessions for high school students using ArcGIS
- Tutor (Biology, Chemistry and Physics), Universidad del Este, Carolina, PR
January-May 2009
Guiding study sessions, developing study guides and preparation tests
- Exchange Student
Spring 2008 Universidad Autónoma de Madrid, Madrid, Spain
Courses: Statistics, Basic GIS, Environmental Systems, and Social Geography

Presentations

- Geological Society of America National Meeting
October 8-12th, 2011 - Minneapolis, MN
Determining long-term erosion rates in Panama- using ¹⁰Be
- VT EPSCoR Streams Project Symposium
April 19th, 2010 – Burlington, VT
A GIS-based analysis of the impacts of landscape-level variables on water quality