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Non-random patterns of species segregation and aggregation within ecological communities are often interpreted as 
evidence for interspecific interactions. However, it is unclear whether theoretical models can predict such patterns and how 
environmental factors may modify the effects of species interactions on species co-occurrence. Here we extend a spatially 
explicit neutral model by including competitive effects on birth and death probabilities to assess whether competition alone 
is able to produce non-random patterns of species co-occurrence. We show that transitive and intransitive competitive 
hierarchies alone (in the absence of environmental heterogeneity) are indeed able to generate non-random patterns with 
commonly used metrics and null models. Moreover, even weak levels of intransitive competition can increase local species 
richness. However, there is no simple rule or consistent directional change towards aggregation or segregation caused by 
competitive interactions. Instead, the spatial pattern depends on both the type of species interaction and the strength of 
dispersal. We conclude that co-occurrence analysis alone may not able to identify the underlying processes that generate 
the patterns.

Ecologists have devoted much effort to understanding 
the role of competitive interactions in shaping ecological 
communities (reviewed by Weiher and Keddy 1999, 
Chesson 2000, Chave et al. 2002, HilleRisLambers et al. 
2012). Within the framework of competitive exclusion 
(Gause 1934), a simple dominance hierarchy of competi-
tive strengths (species A  species B  species C…) should 
eventually lead to a monoculture of the competitively 
superior species. But this is rarely seen in nature (Soliveres 
et al. 2015). Instead, most communities are characterized 
by a small number of common species (which may be 
competitively dominant), and a large number of rare species 
(which may be competitively inferior).

How are inferior competitors able to persist in a com-
munity? Proposed mechanisms include niche segregation 
(Chesson 2000), environmental heterogeneity (Amarasekare 
2003), abiotic stress (Bowker et al. 2010), disturbance (Watt 
1947, Grime 1977), and limited dispersal (Hurtt and Pacala 
1995, Kerr et al. 2002, HilleRisLambers et al. 2012). These 
mechanisms may also explain the observed high diversity 
and co-existence of ecologically similar species (Fox 2013). 
In this respect, Grime (1973) highlighted the importance 
of context-dependent competitive strength, in which the 
ordering of species in a competitive hierarchy changes in 
different environments (Chamberlain et al. 2014, Gioria and 
Osborne 2014).

If competitive strength is context-dependent, species 
richness and abundance should differentially co-vary with 

environmental factors that most limit reproduction, lead-
ing to segregated occurrences of competing species along the 
environmental gradient. Diamond (1975) used examples of 
perfectly segregated species pairs (“checkerboard pairs”) as 
evidence for competitive exclusion (Diamond 1975, p. 387), 
although he did not explicitly invoke context-dependent 
competitive interactions. Subsequent null model analyses 
of species co-occurrence have frequently detected individual 
species pairs and assemblages in which there is less co-
occurrence than expected by chance (Gotelli and McCabe 
2002, Ulrich and Gotelli 2010, 2013).

Following Diamond’s (1975) approach, many authors 
have inferred past or present competitive exclusion from 
spatially segregated co-occurrence patterns (Pitta et al. 
2012, Kennedy et al. 2014, but see Connor et al. 2013). 
Comparing communities at different times, Zaplata et al. 
(2013) and Ulrich et al. (2016) found that local plant 
assemblages became increasingly spatially segregated during 
early succession, and that these changes were associated  
with spatial variability in soil attributes.

Although empirical and statistical support for segregated 
and aggregated species pairs is widespread (Lyons et al. 
2016), these community patterns are hard to generate 
from theoretical models. Only a few studies have so far 
evaluated whether and to what degree competition alone 
(without additional habitat effects like filtering) is able to 
produce a spatially segregated pattern of species occurrences 
(Wootton 2001). With appropriate parameter settings, 
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simple two-species (Levin 1974) and three-species (Caraco 
and Whitham 1984) interaction models can predict aggre-
gated or segregated occurrences. However, patterns of species 
aggregation and segregation are more difficult to generate for 
models of diffuse competition in multi-species assemblages 
(Hastings 1987).

A number of theoretical (Allesina and Levine 2011, Ulrich 
et al. 2014) and empirical (Soliveres et al. 2015, Ulrich et al. 
2016) studies suggest that competitive intransitivity is an 
important mechanism that allows species to coexist within 
a single community in spite of strong competitive interac-
tions. Intransitive competitive networks (Gilpin 1975) are 
formed by loops in the hierarchy of competitive strength. 
For example, in the rock–scissors–paper game, the competi-
tive hierarchy species A species B species C species 
A forms a loop that can theoretically promote coexistence 
(Huisman et al. 2001, Kerr et al. 2002, Laird and Schamp 
2006, 2009).

Ulrich et al. (2014) demonstrated that transitive and 
intransitive competitive hierarchies in ecological communi-
ties can be unequivocally translated into a stable state distri-
bution of abundances by means of a Markov chain model 
(Horn 1975). This model predicts constant abundance 
distributions within a homogeneous environment and no 
spatial segregation of species occurrences among sites (Ulrich 
et al. 2016). However, if competitive hierarchies differ 
among sites because of environmental conditions, species 
abundance distributions and co-occurrence patterns change. 
In this scenario, species segregation among sites is solely 
linked to environmental heterogeneity and not caused by the 
underlying competitive hierarchy (Ulrich et al. 2016).

Models of context-dependent competition among 
sites and intransitive competitive hierarchies within sites 
make different assumptions about equilibrium conditions. 
Context dependency explicitly includes environmental 
spatial and temporal variability (Chamberlain et al. 2014) 
and thus applies to both equilibrium and non-equilibrium 
conditions. It does not make precise predictions about 
changes in species abundances and dominance orders in 
space. In contrast, models of intransitivity are most relevant 
to equilibrium conditions and have so far been applied only 
to closed assemblages in which species compete locally and 
are not affected by migration (Allesina and Levine 2011). 
But some local communities are organized as an open 
metacommunity, which is defined by Gilpin and Hanski 
(1991) and Leibold et al. (2004) as a set of interacting local 
communities that are linked by the dispersal of multiple, 
potentially interacting species. For open metacommuni-
ties, it is unclear whether models of intransitivity will pre-
dict constancy in the richness (and abundances) of local 
assemblages. For example, Soliveres et al. (2015) reported 
that local dryland and grassland plant communities often 
contained intransitive loops, but that these competi-
tive hierarchies explained little of the spatial variation in 
species richness. Interestingly, the frequency of intran-
sitivity decreased with increasing habitat heterogeneity 
(Soliveres et al. 2015) suggesting that species richness 
might be controlled by both intransitive networks and 
context-dependent competition.

In this study, we ask how competitive transitivity 
and intransitivity translate into dominance orders in a 

meta-community that incorporates dispersal and non-equi-
librium dynamics at local scales. The neutral model frame-
work (Hubbell 2001) allows us to generate predictions of 
local abundance and species composition from a set of first 
principles (birth/death processes, dispersal, and speciation). 
These predictions can then be compared to patterns in real 
assemblages (Gotelli and McGill 2006, Rosindell et al. 
2012).

In their original formulation, neutral models were 
based on assumptions of random dispersal and the eco-
logical equivalence of species (Hubbell 2001, Chave 2004, 
Etienne 2005, Etienne and Alonso 2005). Recent extensions 
of models of stochastic community dynamics to include 
asymmetric species interactions (Jabot 2010, Jabot and 
Chave 2011, Rosindell and Phillimore 2011) have paved 
the way for a more detailed analysis of context-dependent 
competitive effects. Such models including competitive 
interactions link the predictions from equilibrium based 
competitive theory with those from dispersal dynamics and 
population growth processes. Because these models do not 
incorporate environmental variability, empirical deviations 
from model predictions may implicate environmental factors 
influencing competitive hierarchies and context dependent 
competition.

Existing non-neutral community models incorporate 
species-specific density dependent mortality (Jabot and 
Chave 2011) or environmentally determined speciation 
probabilities (Tittensor and Worm 2016), but do not incor-
porate direct competitive interactions between species. 
Here, we use a spatially explicit neutral dispersal model 
and incorporate density dependence and direct asymmetric 
competitive interactions between individual pairs of species. 
Our aim is to deduce which patterns of species co-occurrence 
are expected from competitive interactions alone. With this 
model, we address four questions:

Does competitive intransitivity increase local species (1) 
richness?
Does competition change the spatial or temporal (2) 
variability in local richness?
Does competitive intransitivity alone lead to species (3) 
segregation across sites within a meta-community?
Do diffuse and direct competitive interactions predict (4) 
different patterns of species co-existence? 

Material and methods

The dispersal-limited competition model

The present study is based on a simulation platform for 
community modelling that was previously used to show that 
appropriately parameterized neutral models are able to gen-
erate segregated spatial distributions of species co-occurrence 
(Ulrich 2004) and that ground beetle meta-community 
structures are indistinguishable from neutral predictions 
(Ulrich and Zalewski 2007). In our original simulations, we 
use a square grid of 100 patches initially populated randomly 
by a total of 10 000 individuals belonging to 30 species. This 
placement procedure leads to a grid of patches with differ-
ent maximum numbers of individuals per patch (carrying 
capacities) and a Poisson distribution of species richness. 
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The grid of occupied patches represents the metacommu-
nity, whereas each occupied patch represents a local com-
munity. In the following, we will interchangeably use the 
terms grid/metacommunity and patch/local community. 
The subsequent dynamics in each patch follows a zero-sum 
rule (Hubbell 2001), meaning that each local birth, death, 
immigration, or emigration (all probabilities set to 0.01) 
is immediately counterbalanced by a corresponding death, 
birth, emigration, or immigration. Any grid-wide spe-
cies extinction is counterbalanced by a single point muta-
tion speciation in a randomly selected patch. In contrast to 
Hubbell’s (2001) original formulation, this point mutation 
speciation ensures that the total number of species within 
the meta-community remains constant.

In this study, we added two features to this neutral 
model. First, we followed Jabot and Chave (2011) and intro-
duced death rates that are species-specific and incorporate 
interspecific density-dependence. The local death probability 
pi of an individual of species i in a community of j species 
is given by:

π
δ

δi
i

j i

d
d

=
∑

−

−

1

1  (1)

where di is the density of species i and d is the density-
dependence parameter. For d  0, death probabilities are 
proportional to the observed abundance distribution and 
thus equal for all individuals. For d  0, the model penalizes 
abundant species (diffuse A) by higher local death rates, 
and if d  0, the model penalizes rare species (diffuse R). 
For d  1 species mortality rates are identical irrespective of 
abundance. This modification incorporates effects of diffuse 
(indirect) competition from the entire assemblage.

Second, we incorporated the effects of direct pairwise 
competition on birth rates using the Markov chain approach 
of Ulrich et al. (2014). These authors showed that any j 
 j matrix C of pairwise species interaction effects can be 

translated into a unique column stochastic transition matrix  
P (cf. Fig. 1). The inner product PA0  A1 provides the 
vector of expected species abundances A1 after one time 
step, given initial abundances A0. Within a neutral model 
framework, birth probabilities are proportional to current 
abundances. Therefore, the inner product

PA A Q0 1 1== µµ  (2)

generates the vector Q, which (after normalization) contains 
the local birth probabilities of an individual in the commu-
nity. In this way, our model incorporates effects of direct 
(pairwise) competition on birth rates and effects of indirect 
(diffuse) competition on death rates. In the absence of 
dispersal this model of competition yields three qualitative 
predictions for isolated local communities:

A fully transitive competitive hierarchy modulates (1) 
abundances in favour of the stronger competitors by 
increasing their fecundity while leaving death probabili-
ties unchanged (Fig. 1). Because the respective transition 
matrix (P) generated from the matrix of competitive 
strength (C) describes an absorbing state (Fig. 1) (Ulrich 
et al. 2014), this Markov model predicts that the final 
result of transitive competition is a monoculture of the 
strongest competitor, independent of the model settings.
An intransitive competitive hierarchy generates a  (2) 
non-absorbing ergodic transition matrix and therefore 
predicts coexistence of species (Fig. 1). Intransitivity 
might either increase or decrease the equilibrium spe-
cies richness compared to the predictions of the simple 
neutral model.
Diffuse competition that penalizes death rates of less (3) 
abundant species has the same effect as strong com-
petitive hierarchy in favouring abundant species and 
accentuating dominance orders. Therefore it should 
increase the tendency of the model to generate a mon-
oculture of the strongest competitor.

Competitive strength matrix EV1
(a)

Species a b c d e Species a b c d e A0 A1
a 1 1 1 1 1 a 1 1 0.5 0.3 0 15 38 1
b 0 1 1 1 1 b 0 0 0.5 0.3 0 20 3.5 0
c 0 0 1 1 1 c 0 0 0 0.3 0 5 1 0
d 0 0 0 1 1 d 0 0 0 0 0 3 0 0
e 0 0 0 0 1 e 0 0 0 0 0 1 0 0

(b)

Species a b c d e Species a b c d e
a 1 1 1 1 0 a 0 1 0.5 0.3 0 15 23 0.6
b 0 1 1 1 1 b 0 0 0.5 0.3 0.3 20 3.8 0.4
c 0 0 1 1 1 c 0 0 0 0.3 0.3 5 1.3 0.3
d 0 0 0 1 1 d 0 0 0 0 0.3 3 0.3 0.2
e 1 0 0 0 1 e 1 0 0 0 0 1 15 0.6

Transition matrix Abundance vectors

Figure 1. Fully transitive (a) and intransitive (b) competitive strength matrices (as defined by Laird and Schamp 2006 and Ulrich et al. 
2014) of five species can be unequivocally transformed into respective column stochastic transition matrices (entries denote probability 
levels of transition) by the algorithm derived in Ulrich et al. (2014). The latter provide estimates of temporal changes in abundances  
(A0, A1, …) and equilibrium abundances (the dominant eigenvector EV1 of the transition matrix). 1s in the competitive strength matrix 
indicate competitive superiority. For example, in panel (b) species a (in rows) is superior to all species except species e. Matrix multiplication 
of the associated transition matrix with the abundance vectors now returns species abundances in the next generations. The dominant 
eigenvector of this matrix predicts species abundances at equilibrium. In this model of an isolated local community, intransitivity predicts 
increased equilibrium species richness.
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pairwise mutual exclusions among sites; Stone and Roberts 
1990). Species spatial aggregation was quantified by the 
clumping score, which is a normalised count of the number 
of pairwise co-occurrences among sites (Ulrich and Gotelli 
2013). Nestedness measures the ordered loss of species along 
a focal environmental or ecological gradient (Patterson and 
Atmar 1986, Ulrich et al. 2009) and is therefore distinct 
(although not mutually exclusive) from species turnover 
(Ulrich and Gotelli 2013). We quantified the degree of nest-
edness using the standard NODF (nestedness from overlap 
and decreasing fill) metric, which is a normalized count of 
the degree of species overlap among the sequence of plots 
ordered according to decreasing species richness (Almeida-
Neto et al. 2008). NODF ranges from zero (perfect species 
turnover) to 1 (perfect nestedness). Following the method 
of Baselga (2010), we assessed the degree of spatial species 
turnover among cells by the additive partitioning of the 
Sørensen metric bsor (a metric of dissimilarity in community 
composition) into a component representing the difference 
in species richness among sites (bnest) and a component 
representing the spatial turnover of species (bsim). Below we 
focus on this turnover component because it represents the 
compositional variation of communities after controlling  
for differences in richness.

Metrics of species co-occurrences depend on matrix row 
(species) and column (sites) totals and cannot be compared 
directly. Therefore, we used a null model approach and com-
pared observed scores with those obtained from 200 matri-
ces randomly resampled by two different null algorithms. 
First, we resampled species incidences where placement 
probabilities were uniform for all grid cells (the equiprobable 
null model algorithm). In the second null model, placement 
probabilities were proportional to observed marginal occur-
rence totals (the proportional – proportional null model, 
Ulrich and Gotelli 2012). We did not use the popular fixed-
fixed algorithm (Gotelli 2000) because it preserves the mar-
ginal totals of the matrix, which would lead to low variation 
in the NODF and lack of variation in the beta metrics.

Neutral models of limited dispersal (Babak and He 2009) 
and biogeographic models of the mid-domain effect (Colwell 
and Lees 2000) predict that random processes can lead to a 
reduction of species richness near the boundaries of spatial 
domains. To estimate the size of this effect, we calculated the 
difference ΔS in richness between the 12 cells at each of the 
four grid corners and the 12 cells in the centre of the grid. 
Increases in species richness towards the centre of the spatial 
grid will yield a negative ΔS. To assess the spatial variability 
in species richness, we used Lloyd’s (1967) variance – mean 

ratio I = − +
σ
µ µ

2

2

1
1, with m and s2 being the mean species 

richness and its variance, respectively. I  1 is the expected 
value in the case of a Poisson random distribution, I  1 
indicates equitability in richness across the grid, and I  1 
indicates clumping.

For comparison among model settings, we used the 
normalised effect sizes (NES  (observed – expected 
scores)/expected scores) and standardized effects sizes 
[SES  (observed – expected scores)/standard deviation of 
expectation]. Under the assumption of a normal distribution 
of errors, |SESscore|  1.96 indicates approximate statistical 
significance at p  0.05 (two-tailed test). These measures of 

Using stochastic simulations, we ask whether these 
predictions still hold in a spatially explicit model of an open 
metacommunity that incorporates dispersal.

Simulation protocol

To assess the influence of interspecific competition on 
otherwise neutral communities, we created a factorial design 
of five binary model parameters. We crossed two levels of 
dispersal limitation (unconstrained  all cells are equally 
likely to be the target of dispersal, limited  only the adja-
cent cells (the ‘moore neighbourhood’) can reached in 
a single dispersal step), with two levels of migration rates 
(low, high), with two levels of diffuse competition penaliz-
ing either rare (d  0.5) or abundant (d  –0.5) species, and 
two levels of competitive interactions (intransitive, transi-
tive; cf Supplementary material Appendix 1 and 2, respec-
tively). Together with the four neutral scenarios of d  0 and 
P  I (I being the identity matrix), we considered a total 
of 24  4  20 parameter combinations. Because variabil-
ity in the model output within parameter sets was low, we 
replicated each parameter combination only 10 times.

Transitive competitive interactions led to monocultures 
of the best competitors, although the time to complete 
competitive exclusion was very long for some parameter 
combinations ( 90 000 time steps). To ensure that the 
slowest- running model (diffuse competitive interactions 
and high dispersal rates; Table 1) reached equilibrium, we 
ran all models for 92 000 time steps, which incorporated 
1 010 000 birth/death, immigration/emigration, speciation/
extinction events, that is approximately 100 cycles of com-
plete turnover in species composition. Equilibrium condi-
tions were defined by a change of  1 species per single time 
step of the moving average of species richness in the grid. 
We further traced the decrease in average species richness 
among sites (SM) from the initial 27 to 30 species per site 
with the slope z of the semi-logarithmic regression model 
SM  S0 –zln(t) where t denotes the time step of the model 
and S0 the initial species richness. The semi-logarithmic 
model provided the best linear fit to the decay of species 
richness through time.

Analysing community structure and co-occurrences

For each grid, we quantified the degree of species segregation 
(negative species associations) with the common C-score of 
species co-occurrences (a normalised count of the number of 

Table 1. In the pure neutral model migration probability and the 
degree of dispersal limitation influenced final mean species richness, 
the spatial variability in richness, the edge effect of the lattice, and 
the slope of the logarithmic decrease model. Given are partial  
h2 values of a general mixture linear model. Significant parametric 
p(F)  0.001 in bold.

Factor DF
Mean species 

richness Lloyd Edge Slope

Migration probability 1 0.61 0.39 0.00 0.89
Dispersal limitation 2 0.31 0.42 0.01 0.88
Migration  Dispersal 2 0.46 0.30 0.03 0.87
Mean species richness 1 – 0.34 0.01 0.81
Error 53
r2 (whole model) 0.74 0.51 0.08 0.93
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effects reduced the fit of the exponential decay model  
(Fig. 2b) but edge effects were of minor importance  
(Fig. 2c) and did not significantly change between model 
settings (Table 1). Dispersal limitation significantly decreased 
average species richness in the pure neutral communities 
(Fig. 3a, Table 1). Spatial patterns of richness within the grid 
(Fig. 3b) matched a Poisson distribution.

Irrespective of the degree of dispersal limitation, transi-
tive pairwise competition severely decreased average species 
richness per patch in comparison to the neutral expecta-
tion (Fig. 3a). The strongest competitor, as defined by the 

effect size allowed for comparisons among different model 
results, but they did not completely remove the influence 
of species richness: SES values of simulated assemblages 
were moderately correlated with species richness of the 
meta-community for both the proportional null model  
(all r2  0.47, p  0.001) and the equiprobable null model 
(all r2  0.20, p  0.001). NES values performed better 
except for the clumping score – equiprobable null model 
(r2  0.67, p  0.001) and the C-score – proportional null 
model (r2  0.47, p  0.001) combinations.

In both cases, the low equilibrium average richness of 
one to two species per cell generated by the transitive and 
diffuse R competition models were responsible for these 
correlations. Therefore, we used linear models and cova-
riance analysis with NES as the dependent variable and 
average species richness and squared average richness per 
site as covariates to assess the effect of competition and 
dispersal on patterns of species co-occurrences. We note 
that the standardized effect sizes (proportional null model) 
of the C-score and bsim were strongly positively correlated 
(r  0.86), whereas the standardized effect sizes of the 
C-score and the clumping score were strongly negatively 
correlated (r  –0.76). The standardized effect size of NODF 
was negatively correlated with the C-score (r  –0.53), 
bsim (r  –0.64), and the clumping score (r  –0.30). The 
complete raw data used in the present study are contained 
in the Supplementary material Appendix 2.

Results

In the pure neutral model, limited dispersal and low migra-
tion probability reduced the time to species equilibrium 
(Table 1, Fig. 2a–b). The logarithmic decay model explained 
on average 85% of the variability in richness and the model fit 
was independent of dispersal strength (Fig. 2b). Competitive 
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Figure 2. Average slope of the exponential species decay curve (a), and the respective coefficient of determination r2 (b), and the effect of 
grid edges (c) for neutral models with high migration probability and unlimited dispersal (HU, grey) and low migration probability and 
limited dispersal (LL, dark grey) for neutral communities (light grey) and for neutral communities with additional transitive and intransi-
tive competition hierarchies, and diffuse competition penalizing rare (Diffuse R) and abundant (Diffuse A) species. Error bars are one 
standard deviation.

0 0.2 0.4 0.6 0.8 1
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Neutral (HU)
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Figure 3. Average species richness (a), and the spatial variability in 
richness as quantified by the index of Lloyd (b) for neutral models 
with high migration probability and unlimited dispersal (HU, grey) 
and low migration probability and limited dispersal (LL, dark grey) 
for neutral communities (light grey) and for neutral communities 
with additional transitive and intransitive competition hierarchies, 
and diffuse competition penalizing rare (Diffuse R) and abundant 
(Diffuse A) species. Error bars are one standard deviation.
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not generate significant patterns of nestedness (Fig. 4d, 5d, 
Supplementary material Appendix 2 Fig. A1d, A2d).

Pairwise (Table 2, 3) and diffuse (Table 2) competition 
significantly altered species co-occurrences compared to 
the neutral expectation. The C-score and clumping indices,  
but not bsim, were most sensitive to competition. Dispersal 
and competition explained between 5% and 75% of 
variance in co-occurrences depending on the two types of 
null expectation (Table 2). Standardized effect sizes of the 
co-occurrence metrics (Supplementary material Appendix 2  
Fig. A1–A2) were highly significant for the majority of 
competition-dispersal combinations with respect to the 
equiprobable null model, while only 33 of the 2160 com-
parisons with the proportional null model were significant at 
the 5% error level (1.5%).

Type of competition and dispersal limitation interacted 
and caused specific patterns of co-occurrences (Table 3,  
Fig. 4, 5). High dispersal caused intransitive competitive 
communities to be significantly (p  0.001) more segregated 
(C-score) than neutral ones when compared to an equiprob-
able null model and less segregated when compared to the 
proportional null model expectation (Table 3, Fig. 4, 5). 

transition elements of the competition matrix P, often 
excluded all other species, resulting in a monoculture. Slopes 
of the species loss function were comparably steep (Fig. 2b), 
and edge effects of minor importance (Fig. 2c).

In contrast, intransitive competitive interactions 
significantly increased species richness in comparison 
to the neutral expectation (Fig. 3a) and decreased the 
species richness decay slopes (Fig. 2a). Consequently, a 
generalized linear model (Table 2) identified the type of 
competition as being the most important driver of species 
richness. Transitive competition decreased the variabil-
ity in species richness among grids, leading to a segre-
gated pattern of richness (Fig. 3b). Neither transitive nor 
intransitive competition altered edge effects on species 
richness (Fig. 2c).

Pure neutral communities were more spatially aggre-
gated, with lower spatial turnover in species richness than 
predicted by the equiprobable null model (Fig. 4a–c, Sup-
plementary material Appendix 2 Fig. A1a), but less spatially 
aggregated with more species turnover than predicted by the 
proportional null model (Fig. 5a–c, Supplementary mate-
rial Appendix 1 Fig. A2a). Neutral community dynamics did 

–1 0 1 2 3 4 5 6 7
NES NODF

(d)

–1 –0.6–0.2 0.2 0.6
NES βsim

(c)

–1 0 1 2 3 4 5
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Neutral (HU)
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Figure 4. Normalized effects sizes NES (equiprobable null model) the C-core (a), the clumping score (b), bsim (c), and NODF (d) for 
neutral models with high migration probability and unlimited dispersal (HU, grey bars) and low migration probability and limited 
dispersal (LL, dark grey) for neutral communities (light grey) for those with additional transitive and intransitive competition hierarchies, 
and diffuse competition penalizing rare (Diffuse R) and abundant (Diffuse A) species. Error bars are one standard deviation obtained from 
10 replicates each.

Table 2. Main effects general linear modelling of normalized effect sizes of C-score, clumping bsim, and NODF (partial h2 scores) identified 
particularly pairwise competitive interactions to influence average species richness, spatial variability in richness (Lloyd index), and patterns 
of co-occurrence. Significant parametric p(F)  0.001 in bold.

Equiprobable null model Proportional null model

Factor DF Mean species richness Lloyd C-score Clumping bsim NODF C-score Clumping bsim NODF

Migration probability 1 0.07 0.04 0.06 0.02 0.01 0.01 0.03  0.01  0.01  0.01
Dispersal limitation 2 0.03 0.02 0.04 0.01  0.01  0.01 0.02 0.01 0.01  0.01
Diffuse competition 2 0.46 0.20 0.10 0.01  0.01 0.05 0.01 0.02  0.01 0.01
Pairwise competition 2 0.84 0.01 0.42 0.06 0.01 0.02 0.03 0.08  0.01 0.04
Mean species richness 1 – 0.54 0.05 0.11 0.01 0.30 0.24 0.04 0.04 0.09
Squared mean species richness 1 – 0.49  0.01 0.08 0.01 0.25 0.24 0.05 0.03 0.13
Error 530
r2 (whole model) 0.86 0.86 0.75 0.61 0.06 0.65 0.66 0.24 0.23 0.23
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Wootton 2001, Liao et al. 2015). However, recent theo-
retical models (Huisman et al. 2001, Rojas-Echenique and 
Allesina 2011), pointed to the possibility that intransitive 
competitive hierarchies (Vandermeer 2011, HilleRisLambers 
et al. 2012) might be an important mechanism allowing for 
species co-existence, although there is little empirical evi-
dence so far (Reichenbach et al. 2007, Kraft et al. 2015, 
Soliveres et al. 2015). Our simulation corroborates these 
predictions. Even a weak degree of intransitive competition 
significantly increased average local richness above the pure 
neutral expectation (Table 2, Fig. 3). Therefore we argue 
that competitive intransitivity might be a neglected factor 
that increases local richness (Kraft et al. 2015, Soliveres 
et al. 2015). Further, our results suggest that increased spe-
cies richness can occur purely from intransitive competition, 
and does not require environmental variability and associ-
ated differential habitat filter processes (Keddy 1992).

Neutral community dynamics did not cause a modular 
pattern of species occurrence with regions of higher and lower 
richness (Fig. 3). We speculated (question 2) that competitive 

At low dispersal both null models detected trends towards 
aggregation in intransitive communities (Table 3). Irrespec-
tive of the null model transitive communities tended to have 
an aggregated and/or nested structure compared to their pure 
neutral counterparts (Table 3, Fig. 4, 5). This is in line with 
a higher species turnover among sites (bsim) at high dispersal 
rates (Table 3, Fig. 5) compared to the neutral expectation 
(proportional null model).

Diffuse competition penalizing rare species (diffuse R) 
had on average similar effects on the spatial distribution of 
species than transitive competition (Fig. 4, 5), while diffuse 
A communities equalled intransitive ones qualitatively in 
behaviour.

Discussion

In the tradition of the competitive exclusion principle 
(Gause 1934), a large number of co-existing species is often 
attributed to weak competitive interactions (Gilpin 1975, 
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Figure 5. Normalized effects sizes NES (proportional null model) the C-core (a), the clumping score (b), bsim (c), and NODF (d) for neutral 
models with high migration probability and unlimited dispersal (HU, grey bars) and low migration probability and limited dispersal  
(LL, dark grey) for neutral communities (light grey) for those with additional transitive and intransitive competition hierarchies, and 
diffuse competition penalizing rare (Diffuse R) and abundant (Diffuse A) species. Error bars are one standard deviation obtained from  
10 replicates each.

Table 3. Tukey post hoc significances p(F) for pairwise competitive model comparisons (unequal slope covariance analysis with average final 
species richness and squared richness as covariates) for models without diffuse competition (d  0) with high migration probability and 
unlimited dispersal (HU) and low migration probability and limited dispersal (LL). Normalized effects sizes (NES) entered the models as 
dependent variable. First NES  second NES in white (black letters), first NES  second NES in grey with white letters.

Equiprobable null model Proportional null model

C-score Clumping bsim NODF C-score Clumping bsim NODF

Comparison HH

Neutral – Transitive 0.02 0.001  0.001  0.001  0.001 0.87  0.001 0.005

Neutral – Intransitive  0.001 0.84  0.001 0.11  0.001  0.001 0.21 0.002

Transitive – Intransitive  0.001  0.001  0.001  0.001  0.001  0.001  0.001 0.94

LL

Neutral – Transitive  0.001  0.001 0.007  0.001  0.001  0.001 0.11  0.001
Neutral – Intransitive  0.001 0.18 0.95 0.82 0.01  0.001 0.80 0.07

Transitive – Intransitive  0.001  0.001 0.004  0.001  0.001 0.28 0.04 0.02
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species interactions. Our results partly corroborate Soliveres 
et al. (2015): transitive competition increased the degree of 
meta-community nestedness relative to a neutral assemblage 
(Table 3, Fig. 4, 5). This trend is not biased by low species 
richness because the NES transformation effectively removed 
the richness effect on the NODF metric. The influence of 
intransitive competition on the degree of nestedness is less 
clear. Although we observed the trend Soliveres et al. (2015) 
reported, statistical corroboration was weak (Table 3).  
Nevertheless, our results suggest that negative species 
interactions alone might suffice for a trend towards nested 
community structure.

Magnitude and direction of effect sizes in null model 
analyses depend on the choice of the algorithm and there-
fore on the underlying assumption about the constraints 
applied to randomization (Ulrich and Gotelli 2012). Differ-
ent null model approaches frequently lead to contradictory 
effect sizes making the interpretation of pattern challenging. 
In the present case the effect sizes of the C-score of the two 
null models were partly contradictory (Fig. 4, 5), yielding a 
pattern of aggregation when compared to the equiprobable 
expectation, but a pattern of segregation when compared to 
the proportional null model.

In the present case, we used the liberal equiprobable null 
model, the more conservative (proportional) null model, 
and the pure neutral model (Rosindell et al. 2012) as stan-
dards for comparison. Specifically, we compared patterns 
generated by three community models with and without 
competition. The three different null models served to 
control for differences in species abundances, species rich-
ness, and matrix fill. Only this combination allowed for an 
unequivocal interpretation of the results.

Recently, Rosindell et al. (2012) argued that neutral 
models provide process based adequate standards for eco-
logical patterns. However, the major drawback of neutral 
modelling is the sensitivity to parameter settings, and the 
fact that those parameters cannot be estimated in a non-cir-
cular way from the presence–absence matrix. The simplest 
neutral models are based on at least four free parameters: 
species pool size, dispersal limitation, birth rate, and specia-
tion rate. Additionally, total spatial extent and associated 
edge effects might influence the outcome (Babak and He 
2009). Thus we argue that process-based neutral models 
may be just as sensitive to model structure as traditional 
null model analysis. Whether empirical data are compared 
to a neutral model or a null model, a thorough sensitivity 
analysis with different model variation may be necessary to 
fully understand the results.

One useful distinction that emerged here is the idea 
that the null model reveals non-random patterns above 
and beyond those generated by matrix constraints such as 
row and column totals, matrix size, or matrix fill. To tease 
apart mechanisms of habitat filtering, species interactions, or 
dispersal limitation requires additional data and additional 
tests on the spatial pattern of occupied and unoccupied 
sites, and on the habitat structure of those sites (Blois et al. 
2014). In contrast, the neutral model formulation explic-
itly models random dispersal and a lack of species interac-
tions, though often with a zero-sum constraint imposed. 
If the parameters for such a model can be estimated inde-
pendently of the co-occurrence data, the neutral model can 

interactions in combination with low dispersal might cause 
a respective spatial patterning leading to a richness landscape 
within a homogeneous environment. This was not the case 
(Fig. 3). Neutral as well as communities governed by intran-
sitive and diffuse A competitive hierarchies (Fig. 3b) retained 
a Poisson random distribution of species richness among the 
grid cells. In contrast, transitive and diffuse R competition 
had a significant tendency of equalizing richness among cells 
within the overall species poor landscape (Fig. 3b). We note 
that this results might stem, at least partly, from a statisti-
cal bias due to the low number of species per cell. We also 
note that at equilibrium, spatial and temporal variability in 
richness are equivalent. Thus our results do also show that 
competition does not lead to increased temporal fluctuations 
of species richness in single grid cells.

Since the seminal work of Diamond (1975), repli-
cated patterns of negative species association (segregation) 
are often seen as evidence for interspecific competition 
(reviewed by Götzenberger et al. 2012) although many other 
reasons for species segregation are known (Blois et al. 2014). 
Starting with Grime (1973), several authors (reviewed by 
Chamberlain et al. 2014, Gioria and Osborne 2014) argued 
that context-dependent competitive strength in heteroge-
neous environments might be the major driver of species 
segregation among habitats, whereas trait differentiation 
and small-scale environmental variability allows for local  
co-existence (Adler et al. 2013).

However, many studies of community assembly rules do 
not refer to these mechanistic models of species interactions 
and often treat species spatial segregation as sufficient evi-
dence for competition (Price et al. 2012). Here, we focused 
on the question of whether competitive effects alone permit 
species coexistence and generate non-random species asso-
ciations. A related question is whether habitat heterogeneity 
and habitat filtering (Zobel 1997) are primarily responsible 
for non-random species associations.

We found strong evidence that competitive effects alone  
are indeed able to influence the geometry of species 
occurrences (Table 3, Fig. 4, 5, Supplementary material 
Appendix 2 Fig. A1–A2). However, there was no simple 
rule or consistent directional change caused by species 
interactions. Instead, the spatial pattern depended on both 
the type of species interaction and the level of dispersal. Spe-
cifically, intransitive competition increased species turnover 
and decreased clumping when compared to the predictions 
of a neutral model with unlimited dispersal (Table 3). How-
ever, the opposite pattern – decreased species turnover and 
increased clumping – emerged when compared to the pre-
dictions of a neutral model with limited dispersal (Table 3). 
It seems that dispersal limitation and intransitivity are both 
able to generate small scale clusters of communities with dis-
tinct species composition. That means from co-occurrence 
analysis alone we cannot draw simple (simplified) conclu-
sions about the effect of competitive interactions on the 
patterns of species co-occurrences (cf. Kraft et al. 2015 for a 
similar conclusion).

Soliveres et al. (2015) recently reported a pattern of nested 
community structure associated with intransitive competi-
tive hierarchies in dryland plant assemblages. However, it 
remained unclear whether this effect was due to environ-
mental heterogeneity or due to the internal dynamics of 
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also be used to generate an expectation for comparison with 
real data. Alternatively, the neutral model predictions can 
themselves be compared to the predictions of a null model 
(Ulrich 2004, Gotelli and McGill 2006). Neither approach 
by itself is complete, but the combination of null and neutral 
modelling may be the best way forward.

Our work has influence on the interpretation of observed 
patterns of species co-occurrences in field studies. Many 
authors (Gotelli and McCabe 2002, Götzenberger et al. 
2012, Connor et al. 2013) have interpreted non-random 
segregation as evidence for competitive interactions (but see 
Ulrich and Gotelli 2010, Blois et al. 2014), whereas posi-
tive associations (aggregation) have usually been interpreted 
in terms of habitat filtering and facilitation (Götzenberger 
et al. 2012, Vaz et al. 2015). Our results identified clear 
tradeoffs between the type of competitive interactions and 
the degree of dispersal: competitive interactions can generate 
species aggregation, and segregation may stem from dispersal 
limitation alone. Possibly, some reported effects of competi-
tion on the geometry of species occurrences might require 
reassessment. Consequently, future empirical work on the 
spatial structure of meta-communities needs to include 
independent information on dispersal ability and resource 
utilization, as well as information on habitat heterogeneity, 
for a proper interpretation of co-occurrence patterns.       
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