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Abstract. Nestedness is a common biogeographic pattern in which small communities
form proper subsets of large communities. However, the detection of nestedness in binary
presence–absence matrices will be affected by both the metric used to quantify nestedness and
the reference null distribution. In this study, we assessed the statistical performance of eight
nestedness metrics and six null model algorithms. The metrics and algorithms were tested
against a benchmark set of 200 random matrices and 200 nested matrices that were created by
passive sampling. Many algorithms that have been used in nestedness studies are vulnerable to
type I errors (falsely rejecting a true null hypothesis). The best-performing algorithm
maintains fixed row and fixed column totals, but it is conservative and may not always detect
nestedness when it is present. Among the eight indices, the popular matrix temperature metric
did not have good statistical properties. Instead, the Brualdi and Sanderson discrepancy index
and Cutler’s index of unexpected presences performed best. When used with the fixed-fixed
algorithm, these indices provide a conservative test for nestedness. Although previous studies
have revealed a high frequency of nestedness, a reanalysis of 288 empirical matrices suggests
that the true frequency of nested matrices is between 10% and 40%.

Key words: biogeography; matrix temperature; nestedness; nestedness temperature calculator; null
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INTRODUCTION

A common biogeographic pattern is species nested-

ness: smaller communities form proper subsets of larger

communities (Patterson and Atmar 1986, Atmar and

Patterson 1993). In an ordered binary presence–absence

matrix, nestedness leads to a maximally ‘‘packed’’

pattern of ones and zeroes. Unexpected presences or

absences from a maximally packed matrix can be used to

quantify the extent of nestedness, both for the matrix as

a whole and for individual species (Atmar and Patterson

1993).

Although Darlington (1957) first described the pattern

of nestedness and its possible causes, the study of

nestedness was popularized by the pioneering work of

Patterson and Atmar (1986). These authors compiled

published matrices, developed convenient software (the

nestedness temperature calculator, NTC), and intro-

duced an appealing index of matrix temperature to

quantify nestedness (Atmar and Patterson 1993, 1995).

The matrix temperature metric uses the Euclidian

distances of unexpected empty or filled cells from the

isocline that separates presences from absences in a

perfectly nested matrix. The sum of these distances is

rescaled relative to the maximum possible value for a

given matrix size and fill. Using the NTC, Wright et al.

(1998) found a large percentage of the matrices compiled

by Atmar and Pattterson (1995) were nested and argued

that selective extinction and ordered collapse of com-

munities were the primary causes of nested patterns.

However, subsequent analyses have revealed potential

problems with the NTC and the index of matrix

temperature. Wright et al. (1998) found that the matrix

temperature index is sensitive to matrix size. Fischer and

Lindenmayer (2002) and Higgins et al. (2006) showed

that the randomization procedure of NTC is prone to

identify nestedness as an artifact of passive sampling.

Greve and Chown (2006) found that endemicitiy biases

the tests and causes the analyses to incorrectly identify

nestedness after the addition of non-nested endemic

species to the matrix.

Moreover, high frequencies of mutual species exclu-

sions (checkerboards) or pronounced classes of ubiqui-

tous and infrequent species (a core-satellite pattern) may

cause unstable results or inflated type I error rates

(Fischer and Lindenmayer 2002, Rodrı́guez-Gironés and

Santamarı́a 2006). The nearly exclusive use of the matrix

temperature measure has given the impression that it is

the only index of the degree of nestedness. However,

Patterson and Atmar (1986), Cutler (1991), Wright and

Reeves (1992), and Brualdi and Sanderson (1999)

proposed other measures of nestedness that are based

on simple counts of unexpected presences and/or

absences. The statistical properties of these indices have

not been well-studied, but they do appear to be sensitive

to matrix size when used with null model algorithms that

include equiprobable row or column constraints (Wright

et al. 1998). In contrast, null models that use fixed row
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and column totals (and thus retain more of the structure
of the original matrix) may be less sensitive to matrix

size, but may also have less power to detect nestedness
(Cook and Quinn 1998).
The statistical significance of any nestedness index

value has to be tested against some null hypothesis. The
respective null distributions are obtained from null
models that generate expected index values and the

associated confidence limits. Before large meta-analyses
are conducted with empirical data sets, it is therefore
important to understand the statistical properties of the

different indices and null model algorithms (Gotelli
2001). There are two goals of the current study: (1) to
systematically analyze the performance of eight nested-
ness indices, crossed with six null model algorithms, and

two matrix structure types; (2) to re-evaluate the pattern
of nestedness in the original collection of published
matrices that were compiled by Atmar and Patterson

(1995).

MATERIALS AND METHODS

We used two types of random presence–absence
matrices (200 matrices each) to study the properties of
six randomization algorithms and eight measures of

nestedness.

Matrix structures

Nested matrices.—Two hundred nested matrices (MN

set) were created by randomly sampling individuals from
a metacommunity in which population sizes of the
species were distributed according to a lognormal

species rank order distribution:

S ¼ S0e½�aðR�R0Þ2 � ð1Þ

in which S is the number of species per log2(abundance

class R), S0 is the number of species in the modal class
R0, and a is the shape-generating parameter.
Individuals were randomly sampled until a predefined

number of species per site was achieved. For each
matrix, the shape-generating parameter a was sampled
randomly from a uniform distribution between 0.1 and

0.5 (a canonical lognormal has a ¼ 0.2 [May 1975]).
Total numbers of species m and sites n per matrix were
also sampled from uniform distributions (3 � m � 200
and 3 � n � 50). This sampling protocol produced

matrices that should be moderately to strongly nested
due to passive sampling (Higgins et al. 2006).
Non-nested matrices.—In the second type of matrix

(M0 set), species occurrences were again determined by
Eq. 1, but species numbers per site mi were held nearly
constant (randomly taking mi, miþ 1, or mi� 1 species).

This second type of matrix by definition should not be
nested. Note that if all sites have identical numbers of
species, the six nestedness measures N0, N1, UA, UP,

and UT (described in Nestedness metrics) are undefined.
Empirical matrices.—We also analyzed 288 published

presence–absence matrices from the set of 294 matrices
that were compiled by Atmar and Patterson (1995) We

excluded six matrices from the Atmar and Patterson

(1995) compilation because three of them contained only

one row or one column, and three others did not allow

for computation of all of the nestedness metrics. Prior to

analysis, we transposed matrix rows and columns to

match the format used here and in species-co-occurrence

and biodiversity analyses (rows ¼ species, columns ¼
sites).

Nestedness metrics

We analyzed eight indices that have been proposed to

quantify the pattern of nestedness in a presence–absence

matrix. For all of these indices except NC, the lower the

index value, the stronger the pattern of nestedness.

1) N0 is a count of how often a species is absent from a

site with greater species richness than the most

impoverished site in which it occurs (Patterson and

Atmar 1986).

2) N1 is the compliment of N0 and is a count of the

number of occurrences of a species at sites with fewer

species than the richest site in which it occurs (Cutler

1991).

3) NC is a count of the number of species shared over

all pairs of sites (Wright and Reeves 1992). NC is

invariant if the column totals of the matrix are fixed, so

it was not analyzed with the FF and FE algorithms

(described in Null model algorithms).

4) UA is a count of unexpected absences of species

from more species-rich sites for which the sum of

unexpected absences and presences is minimal (Cutler

1991).

5) UP is a count of unexpected presences of species

from more species-poor sites for which the sum of

unexpected absences and presences is minimal (Cutler

1991).

6) UT is the sum of deviations from perfect nestedness

(UT ¼UA þUP [Wright et al. 1998]).

7) BR is a count of the number of discrepancies

(absences or presence) that must be erased to produce a

perfectly nested matrix (Brualdi and Sanderson 1999).

8) MT is a modified version of the matrix temperature

measure of Atmar and Patterson (1993).

The original matrix temperature measure did not

strictly define the method for isocline construction and it

produced unstable results for matrices rich in checker-

boards (Rodrı́guez-Gironés and Santamarı́a 2006) or

endemics (Greve and Chown 2006). Therefore, we

modified the matrix temperature measure in three ways.

First, we did not exclude totally filled rows and columns

as does the NTC to compute the isocline. Because such

rows and columns occur frequently in observed pres-

ence–absence matrices, exclusion might substantially

change matrix dimensions and distort the comparisons

between different nestedness metrics.

Second, instead of calculating a curved isocline (as in

the NTC), we defined the isocline as two line segments

that span from the lower-left corner of the first filled

column and the upper-right corner of the first filled row
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to the point in the center of the matrix that represents

the percentage of matrix fill (Fig. 1). The curved isocline

in the NTC approximates these linear isoclines, but

crosses them twice.

Third, we excluded from the computation of matrix

temperature those matrix cells that fell directly on the

isocline. If presences or absences close to the isocline are

more probable than those that are distant from the

isocline, cells directly at the boundary between the filled

and the empty parts of the matrix should simply reflect

Poisson errors. Their presence might contribute to noise

in the matrix, making it more difficult to detect

nestedness when it is present. Exclusion of these points

also seems appropriate because of small differences that

might arise from using linear vs. nonlinear isoclines.

Null model algorithms

We used six null model algorithms to generate

randomized matrices. For binary presence–absence

matrices, these algorithms reshuffle the values within

the matrix, either preserving matrix row or column

totals (‘‘fixed’’ algorithms) or allowing row and column

totals to vary freely (‘‘equiprobable’’ algorithms). Both

types of algorithms retain different amounts of the

information contained in the original matrix. The

equiprobable algorithms are constrained only by total

(matrix-wide) species occurrences. Fixed algorithms

additionally constrain species numbers per site or

occurrences across sites to match the original matrix.

We used the following six algorithms to generate

randomized matrices:

1) FF (fixed-fixed) maintains both observed row and

column totals (Connor and Simberloff 1979, Gotelli

2000). We implemented this null model with a variation

of the ‘‘sequential swap algorithm’’ (Manly 1995, Gotelli

and Entsminger 2001), in which we sequentially

reshuffled 5000 randomly sampled 2 3 2 submatrices

that have the same row and column totals after their

elements are swapped. Matrices created this way have

the same row and column totals as the original matrix.

Each subsequent matrix was created with an additional

5000 swaps. The sequential swap algorithm has been

extensively studied in the context of species co-occur-

rence analyses (Gotelli 2000, Simberloff and Zaman

2000, Miklós and Podani 2004, Ulrich 2004). This

algorithm has a small bias against finding species

segregation patterns (Miklós and Podani 2004), but

has good statistical properties and performs well on test

matrices (Gotelli 2000, Gotelli and Entsminger 2001).

2) FE (fixed row totals, equiprobable column totals)

maintains observed row totals but allows column totals

to vary randomly. This null model preserves species

occurrence frequencies (row totals), but allows species

richness per site (column totals) to vary randomly and

equiprobably (Gotelli 2000).

3) EF (equiprobable row totals, fixed column totals)

maintains observed column totals but allows row totals

to vary randomly. This null model preserves species

richness per site (column totals), but allows species

occurrence frequencies (row totals) to vary randomly

and equiprobably (Gotelli 2000). This model was used

by Patterson and Atmar (1986) as their R0 model.

4) EE (equiprobable row totals, equiprobable column

totals) maintains the total number of species occurrences

in the matrix, but allows both row and column totals to

vary freely (Gotelli 2000).

5) PE (proportional row totals, equiprobable column

totals) maintains column totals, but species are not

drawn equiprobably. Instead, species are drawn ran-

domly with probabilities set proportional to observed

row totals. This model was used by Patterson and Atmar

(1986) as their R1 model.

6) LF (lognormal row totals, fixed column totals)

maintains column totals, but row totals are determined

by a random draw from a lognormal species abundance

distribution (Eq. 1).

All null models and nestedness indices were calculated

with the software applications Nestedness and Matrix

(see Supplement).

Summary statistics

For each combination of null model (six variants),

nestedness index (eight indices), and matrix (three

matrix types: nested, unnested, empirical), we created

100 null matrices to compare to the observed matrix.

Null model distributions appeared to be not significantly

skewed. Therefore, we calculated a standardized effect

size (SES) as a Z-transformed score (Z ¼ [x � l]/r) to
compare the observed index to the distribution of

simulated indices (x ¼ observed index value, l ¼ mean,

r¼ standard deviation of the 100 index values from the

simulated matrices). SES values below�2.0 or above 2.0

FIG. 1. Matrix temperature isocline construction for a
binary presence–absence matrix. The computation of the
distances (dij) of unexpected empty cells (A) and unexpected
filled cells (P) from the isoclines I1 and I2 defines the matrix
temperature index. The point F marks the percentage of matrix
fill on the matrix diagonal.
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indicate approximate statistical significance at the 5%

error level (two-tailed test). The SES is derived from

meta-analysis (Gurevitch et al. 1992) and can be used to

compare results among different matrices and algo-

rithms (Gotelli and McCabe 2002).

Diagnostic tests

We used two additional tests to evaluate the statistical

behavior of the FF algorithm. First, for the set of nested

matrices, we used linear regressions of the SES of each

index on matrix shape (the ratio m/n), matrix size (the

product m 3 n), matrix fill (percentage of 1’s in the

matrix), and the difference in species richness of the sites

(the quotient of maximum to minimum richness). These

analyses reveal the sensitivity of the different nestedness

metrics to simple measures of matrix size and shape.

Second, we tested the power of the FF algorithm to

detect matrices that are progressively more nested. We

began with a set of random matrices created by the EE

algorithm and progressively eliminated the unexpected

absences and unexpected presences, thus adding more

nested structure to the matrix. At each step, we

measured the SES for the resulting matrix. Eventually

the matrix is completely nested (although note that the

fixed-fixed algorithm cannot actually be used for a

matrix that is perfectly nested because there are no other

matrix rearrangements possible that maintain fixed row

and column sums). This analysis reveals how well the

algorithm detects pattern is a series of progressively

structured matrices. We also conducted the analysis in

the other direction, beginning with a perfectly nested

matrix and adding more randomness to it. This is a

version of the ‘‘noise test’’ introduced by Gotelli et al.

(1997), in which random noise is sequentially added to a

perfectly ordered matrix.

RESULTS

Non-nested matrices

There were strong differences among the null models

in their performance on random matrices. For all of the

nestedness metrics, the fixed-fixed algorithm (FF) gave a

random result for approximately 95% of the test cases

(lightface, upright type in Table 1). In other words, 95%

of the random matrices generated an SES , j2j, which
encompasses approximately 95% of the standard normal

distribution. The other algorithms generally failed this

criterion, often with substantially inflated type I error

rates (boldface type in Table 1). There were a few

combinations of algorithm and index that correctly

identified null matrices as random in greater than 70% of

the cases (italic type in Table 1), but these error rates

would still be considered unacceptably high (P , 0.30)

for conventional hypothesis testing.

Nested matrices

For the nested matrices, a powerful null model and

nestedness metric should detect non-randomness at least

50% of the time. In other words, the test should be more

likely to reject the null hypothesis than to fail to reject it

when the null hypothesis is false and the matrix is

actually nested.

By this criterion, the EE, FE, EF, and PE algorithms

had good statistical power, and usually rejected the null

hypothesis for more than 70% of the matrices (lightface,

upright type in Table 2). In contrast, the FF and LF

algorithms performed poorly, and usually rejected the

null hypothesis less than 25% of the time, even though

the set of test matrices was non-random and contained

nested structure (boldface type in Table 2).

For both nested and non-nested matrices, the

differences among the eight nestedness metrics were less

marked than the differences among the six null model

algorithms. For the nested matrices, the FF algorithm

(fixed row and column sums) and the N1 metric (species

absences) detected nestedness in 41% of the nested

matrices (italic type in Table 2), which was substantially

higher for this algorithm than the other nestedness

metrics. However, even with this combination, there

would still be a substantial risk of a type II error

TABLE 1. Proportion of random matrices (M0 set) for which
randomness was correctly detected by the null model analysis
(�2 , SES , 2).

Null
model

Nestedness index

N0 N1 NC UA UP UT BR MT

FF 0.96 0.93 0.95 0.93 0.96 0.96 0.93
EE 0.13 0.13 0.03 0.40 0.42 0.10 0.12 0.26
FE 0.59 0.55 0.66 0.67 0.48 0.77 0.32
EF 0.37 0.36 0.04 0.39 0.42 0.23 0.05 0.08
PE 0.81 0.34 0.31 0.47 0.79 0.35 0.35 0.37
LF 0.66 0.56 0.52 0.75 0.71 0.50 0.48 0.56

Notes: Typeface indicates the proportion of matrices scored
as random: boldface, P , 0.70; italic, 0.70 , P , 0.90; lightface
roman, P . 0.90. Empty cells occur where the score could not
be computed. Null model algorithms are described in Materials
and methods: Null model algorithms, and nestedness indices are
described in Materials and Methods: Nestedness matrices.

TABLE 2. Proportion of nested matrices (MN set) for which
nestedness was detected by the null model analysis (SES ,
�2 for all indices except NC, for which SES . 2 indicates
nestedness).

Null
model

Nestedness index

N0 N1 NC UA UP UT BR MT

FF 0.01 0.41 0.22 0.02 0.02 0.02 0.16
EE 0.94 0.96 0.90 0.87 0.78 0.96 0.98 0.94
FE 0.87 0.9 0.8 0.74 0.91 0.89 0.86
EF 0.88 0.93 0.96 0.82 0.7 0.94 0.94 0.91
PE 0.76 0.85 0.91 0.72 0.59 0.84 0.85 0.81
LF 0.02 0.02 0.04 0.01 0.02 0.02 0.03 0.03

Notes: Typeface indicates the proportion of nested matrices
detected; boldface, P , 0.25; italic, 0.25 , P , 0. 50; lightface
roman, P . 0.50. Empty cells occur where the score could not
be computed. Null model algorithms are described in Materials
and methods: Null model algorithms, and nestedness indices are
described in Materials and Methods: Nestedness matrices.
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(probability of incorrectly accepting the null hypothesis

¼ 0.59).

Empirical matrices

Table 3 gives the frequencies with which nestedness

was detected for the 288 empirical matrices compiled by

Atmar and Patterson (1995). The proportion of signif-

icant matrices varied from a low of 0–1% (all nestedness

metrics with the LF algorithm) to a high of 80% (the EE

algorithm with the BR nestedness index). The variation

in the detection of nestedness mirrored the results of the

benchmark tests with random and non-random matri-

ces. Namely, conservative algorithms (FF and LF)

detected nestedness infrequently (compare with Table

1), whereas liberal algorithms (EE, FE, EF, and PE)

detected nestedness frequently (compare with Table 2).

Diagnostic tests

We used the FF null model to test for the behavior of

the BR and MT indices during sequential reduction or

enhancement of the degree of nestedness. A sequential

elimination of unexpected absences and occurrences in

random matrices that were generated by the EE

algorithm showed an increase in the number of Z scores

,�2 for the BR index (Fig. 2A). Maximally, about 75%

of the matrices were correctly identified as being nested.

In contrast, MT (matrix temperature) failed to detect

nestedness even for the very ordered matrices and

identified at most 10% of them as being nested (not

shown). The stepwise reduction of the degree of nested-

ness starting with an ideally nested matrix resulted for

BR in a decrease in the frequency of Z scores ,�2 until

at 50% decrease in nestedness only 6% of the matrices

were identified as being nested (Fig. 2B). MT identified

90% of these matrices initially as being disordered (the

opposite of nested). With decreasing nestedness, the

proportion of matrices identified as being random

increased to 90%. The percentage of matrices identified

as being nested remained at all steps below 10% (not

shown). For the Atmar and Patterson (1995) data set,

the BR index identified a maximum of 37% of the

matrices as being nested during the stepwise increase in

nestedness (Fig. 2C). The MT index identified at most

9% of them as being nested (not shown).

Bivariate correlations using the FF algorithm showed

that the Z scores of the BR index were least affected by

matrix properties (Table 4). Other indices showed

significant associations with matrix size, although the

signs of the correlations were different. For N1, UA, and

MT, the larger the matrix, the more likely the test would

detect nestedness (Fig. 3). However, for N0 and UP, the

correlation was in the opposite direction, so that

nestedness was more likely to be detected in small

matrices.

DISCUSSION

Our diagnostic tests clarified the behavior of different

null models and different nestedness algorithms, but also

complicated the interpretation of empirical nestedness

patterns. The analyses of a set of nested and non-nested

TABLE 3. Proportion of nested matrices of the Atmar and
Patterson (1995) data set for which nestedness was detected
by the null model analysis (SES , �2 for all indices except
NC, for which SES . 2 indicates nestedness).

Null
model

Nestedness index

N0 N1 NC UA UP UT BR MT

FF 0.16 0.13 0.07 0.09 0.18 0.11 0.07
EE 0.72 0.74 0.70 0.35 0.64 0.78 0.80 0.75
FE 0.61 0.53 0.28 0.48 0.64 0.64 0.65
EF 0.67 0.71 0.74 0.38 0.58 0.73 0.72 0.63
PE 0.42 0.47 0.50 0.31 0.35 0.51 0.47 0.35
LF 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.00

Notes: Typeface indicates the proportion of nested matrices
detected: boldface, P , 0.25; italic, 0.25 , P , 0.50; lightface
roman, P . 0.50. Empty cells occur where the score could not
be computed. Null model algorithms are described in Materials
and methods: Null model algorithms, and nestedness indices are
described in Materials and Methods: Nestedness matrices.

FIG. 2. Percentage of significant Z scores (Z , �2) of the BR metric (a count of the number of discrepancies [absences or
presence] that must be erased to produce a perfectly nested matrix) under the FF (fixed-fixed) null model (described in Materials
and Methods: Null model algorithms). Three sets of matrices are used in which there is a progressive increase (A, C) or decrease (B)
in nestedness. (A) One hundred random matrices (generated by the EE [equiprobable row totals, equiprobable column totals;
described inMaterials and Methods: Null model algorithms] algorithm); (B) 100 perfectly nested matrices; (C) 288 empirical matrices
compiled by Atmar and Patterson (1995). Note that, in panels A and C, once the 50% increase in nestedness is reached,
progressively more matrices became perfectly or nearly perfectly nested. FF is not able to detect nestedness in such cases, and the
percentage of significant Z scores deceased (not shown).
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matrices illustrate the classic trade-off between type I

and type II statistical errors. The FF algorithm, in which

row and column totals are preserved, has good type I

error properties when tested against null matrices (Table

1), but has poor power for detecting nestedness in

patterned matrices (Table 2). Because the FF algorithm

preserves row and column totals, the observed matrix

will more closely resemble matrices created by the FF

algorithm than by algorithms that relax row or column

totals. This similarity makes it more difficult for the FF

algorithm to detect nestedness. Other algorithms,

including PE and EF, which were introduced by

Patterson and Atmar (1986), have good power to detect

nested matrices (Table 2), but are prone to reject the null

hypothesis for random matrices (Table 1). For standard

statistical tests, guarding against Type I error has

traditionally been a high priority (Gotelli and Ellison

2004), so the FF algorithm should be used on these

grounds for a conservative test of nestedness. The FF

algorithm used with the N1 index had the best chance of

detecting nested matrices (41%; Table 2).

For this test, 13% of the compiled empirical matrices

were significantly nested. Because this is a conservative

test, this result represents a lower bound on the true

frequency of nestedness in nature. Alternatively, we

could use a test that has more power, but at a cost of

increased type I error. From the analyses in Table 1 and

Table 2, the combination of the N0 metric with the PE

algorithm has a moderately high type I error frequency

(P ¼ 0.19), but comparably good power for detecting

nestedness (P ¼ 0.76). By this criterion, 42% of the

empirical matrices were nested (Table 3). Thus, the true

frequency of nestedness in the empirical matrices is

probably between 13% and 42%. This is a substantial

fraction, although it is probably lower than the

frequencies of 20% (UA index with the EP algorithm)

to 70% (NC index with the PE algorithm) reported by

Wright et al. (1998) for matrices with P , 0.01.

An additional complication is that the N0 and N1

indices appear to be sensitive to matrix size, so that the

probability of detecting nestedness will depend on how

large or small the matrix is (Table 4). Wright et al.

(1998) reported a similar result for the EE and PE

algorithms. With N1 and the FF algorithm, there is a

greater chance of detecting nestedness with large

matrices than with small. Based on regression of SES

against matrix size (Table 4), a nested matrix of at least

340 elements (row number 3 column number) is needed

for an SES of�2 (the traditional P¼ 0.05 cutpoint). In

the Atmar and Patterson (1995) data sets, 138 of the 288

matrices are this size or larger, and of those 20% were

significantly nested (SES , �2).
Is there a way to distinguish between nestedness

patterns caused by passive sampling and nestedness

patterns caused by ecologically more relevant mecha-

nisms (Andrén 1994)? Our artificial matrices were

generated by passive sampling and the N0, UA, UP,

UT, and BR indices identified them with the FF null

model as being not nested (Table 2). This raises the

question of whether the FF algorithm is generally able

to detect nestedness caused by forces other than passive

sampling. We used the BR index for this test because it

appeared to be least affected by matrix properties (Table

4). We found that the BR index is able to correctly detect

and reject nestedness with the FF algorithm for a series

of matrices in which we sequentially increased or

decreased the degree of nestedness (Fig. 2A, B). In

contrast, the BR index did not point to nestedness in the

MN matrices (Fig. 2C), which were created by passive

sampling.

These analyses suggest that the BR index, used with the

FF algorithm, may be able to discriminate between a

nested pattern due to passive sampling and nestedness due

to other ecological mechanisms. However, matrices

constructed by passive sampling may have been less

nested than those used in tests that sequentially increased

nestedness in the initially randommatrices. Moreover, FF

tends to retain part of the structure (particularly species

numbers and occurrences) of the original matrix (Cook

and Quinn 1998). Hence, it might fail to detect nestedness

caused by very unequal species numbers and/or site

occurrences. For such matrices, other null models that

TABLE 4. Bivariate Pearson correlation coefficients between Z
scores (FF null model) of nestedness measures and matrix
shape (the quotient of numbers of rows m to numbers of
columns n), matrix size (m3 n), matrix fill (percentage of 1’s
in the matrix), and the difference in species richness of the
sites (the quotient of maximum to minimum richness).

Nestedness
index

Matrix
shape

Matrix
size

Matrix
fill

Richness
difference

N0 �0.07 0.69*** �0.26 0.43***
N1 0.071* �0.86*** 0.30*** �0.46***
UA 0.14* �0.4*** 0.10 �0.23**
UP �0.19*** 0.62*** �0.09 0.28**
UT �0.09 0.15 0.01 0.09
BR �0.10 0.17 �0.03 0.18
MT 0.13 �0.27** �0.31*** 0.01

Note: Data are the 200 matrices of the MN data set, which
were generated by passive sampling. Nestedness indices are
described in Materials and Methods: Nestedness matrices.

* P , 0.05; ** P , 0.01; *** P , 0.001.

FIG. 3. The dependence of Z scores of the MT metric (a
modified version of the matrix temperature measure of Atmar
and Patterson [1993]) on matrix size (square of m 3 n) for the
MN matrices (R2¼ 0.07, P , 0.001).
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contain fewer constraints might be more appropriate.

Future studies should clarify whether the different

biological mechanisms known to produce nested species

distributions (Patterson and Atmar 2000) require different

null model algorithms and measurements.

In spite of its conceptual appeal, matrix temperature

did not perform well as an index for detecting nestedness;

the modifications of the MT index that we introduced

(calculation of linear isoclines, inclusion of all rows and

columns, and exclusion of cells that intercept the isocline)

did not improve its performance. With the FF algorithm,

the MT index decreased with matrix size and fill (Table

4). This sample-size dependency has also been detected

for matrix temperature when used with the EE algorithm

(Sfenthourakis et al. 2004, Greve and Chown 2006).

From our analyses we conclude that although the

concept of matrix temperature was important for

popularizing nestedness studies, this index should no

longer be used to test for nestedness patterns.

In contrast, the BR index appeared to be largely

independent of matrix properties (Table 4). Greve and

Chown (2006) reported similarly good statistical prop-

erties of BR using the EE algorithm. The reason for this

might be that BR links observed and maximally packed

matrices in a simple mechanistic way, without making

additional assumptions that might be influenced by

matrix structure. Although the N1 index is sensitive to

matrix size, it is not prone to type I errors (Table 1) and

has the best power for detecting nested matrices when

they are present (Table 2). We suggest, therefore, that

the combination of the FF algorithm with the N1 and

the BR indices is a conservative test for patterns of

nestedness.

Our analyses have clarified the power of different

proposed algorithms and metrics to detect patterns of

nestedness in binary presence-absence matrices. They

focused on the FF algorithm and extend existing tests

(Cook and Quinn 1998, Wright et al. 1998) that were

based on the EE, EF, and EP algorithms (Table 1). Once

nestedness is detected, however, additional analyses may

be necessary to distinguish among the hypotheses of

selective extinction (Patterson and Atmar 2000, Bruun

and Moen 2003), differential dispersal (Cook and Quinn

1995, Loo et al. 2002, McAbendroth et al. 2005), passive

sampling (Andrén 1994, Fischer and Lindenmayer 2002,

Higgins et al. 2006), differential habitat quality (Hy-

lander et al. 2005), or nesting of habitats (Hausdorf and

Hennig 2003, Wethered and Lawes 2005).
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SUPPLEMENT

Software applications used to calculate the nestedness metrics (Ecological Archives E088-109-S1).

July 2007 1831NESTEDNESS ANALYSIS


