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ABSTRACT

Ecologists and biogeographers are currently expending great effort forecasting

shifts in species geographical ranges that may result from climate change. How-

ever, these efforts are problematic because they have mostly relied on presence-

only data that ignore within-species genetic diversity. Technological advances

in high-throughput sequencing have now made it cost-effective to survey the

genetic structure of populations sampled throughout the range of a species.

These data can be used to delineate two or more genetic clusters within the

species range, and to identify admixtures of individuals within genetic clusters

that reflect different patterns of ancestry. Species distribution models (SDMs)

applied to the presence and absence of genetic clusters should provide more

realistic forecasts of geographical range shifts that take account of genetic vari-

ability. High-throughput sequencing and spatially explicit models may be used

to further refine these projections.
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INTRODUCTION

A major ecological research programme in this new millen-

nium is to understand the consequences of global climate

change for populations and communities (Parmesan, 2006;

Burrows et al., 2011). A more specific focus within that pro-

gramme is to build species distribution models (SDMs; Elith

& Leathwick, 2009) that predict the probability of occurrence

of a species in contemporary climatic and geographical space

(Peterson et al., 2011). The output of a SDM can then be

combined with projections of future (or past) climatic condi-

tions to forecast (or hindcast) shifts in the occurrence and

geographical range of a species (Williams et al., 2013; Bur-

rows et al., 2014). These projected range maps represent the

elemental building blocks for understanding how potentially

novel assemblages of species will interact in future climates

(Blois et al., 2013) and what kind of ecosystem functions

(Cramer et al., 2001) and services (Olesen & Bindi, 2002)

they may provide.

This Perspective will be divided into two parts. In the first

part, we briefly review current practices in species distribution

modelling (Elith & Leathwick, 2009), and a recent controversy

over two competing algorithms – MaxEnt (maximum

entropy) and MaxLike (maximum likelihood) – that are used

to estimate the probability of species occurrence. Our conten-

tion is that neither of these algorithms is optimal because they

both are used mostly with presence-only data, which makes

the estimation process complicated and the output uncertain.

More generally, standard SDM methods applied to presence-

only species occurrence records cannot easily accommodate

the possibility of local adaptation (Thuiller et al., 2013) and

evolutionary change within different parts of a species geo-

graphical range (Atkins & Travis, 2010).

In the second part of this essay, we suggest ways that stan-

dard genetic methods (Pritchard et al., 2000) and recent

technological advances in high-throughput sequencing (Mar-

dis, 2011) can be combined with traditional field surveys to

build new SDMs that incorporate genetic variation within a

species geographical range. We also highlight a few recent

studies that are moving in this direction. Our main argu-

ment is that existing methods that are based on presence-

only occurrence records are statistically fragile, and they do

not allow us to explore the hypothesis that current genetic

variation can predict future responses to climate change.

Both problems can be addressed by building forecasting

models that are based on genetic data.
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SPECIES DISTRIBUTION MODELS

Species distribution modelling has its roots in wildlife studies

of animal–habitat associations (Scott et al., 2002) that were

themselves based on a conceptual framework of the Grinn-

elian niche as a spatial model of animal abundance (James,

1971). The SDM framework emerged over a period of several

decades, in concert with the development of GIS (Goodchild,

2003) and the availability of georeferenced environmental

data layers (Beaumont et al., 2005), an expanding collection

of multivariate (McGarigal et al., 2000) and geostatistical

(Diggle & Ribeiro, 2007) modelling tools and the ever-

increasing speed and storage capacity of personal and main-

frame computers, combined with the recent success of R (R

Core Team, 2013) and other open-source software platforms

(Neteler et al., 2012). SDMs have received greater attention

in the past decade as a collective sense of societal and scien-

tific urgency over climate change has emerged (Hansen et al.,

2013).

A plethora of statistical and mechanistic models has been

developed, and there is a steady stream of publications

describing new methods (Pagel & Schurr, 2012; Miller, 2014)

and improvements to existing ones (Radosavljevic & Ander-

son, 2014). But the field is currently dominated by MaxEnt

(Phillips et al., 2006), a machine-learning algorithm based on

principles of maximum entropy (Elith et al., 2011). The

algorithm has been extensively tested and benchmarked

(Hernandez et al., 2006; Phillips & Dud�ık, 2008), and works

with presence-only species occurrence records. Phillips et al.

(2006) carefully laid out the theoretical framework, assump-

tions and methods of MaxEnt. Although not all SDMs are

based on MaxEnt, and not all MaxEnt analyses are of SDMs,

the Phillips et al. (2006) publication has received over 2600

citations, with over 500 in the year 2014 alone (Web of Sci-

ence, accessed 25 May 2015), and it is the most widely used

tool by ecologists and biogeographers for species distribution

modelling.

CURRENT CONTROVERSY OVER MAXENT AND

MAXLIKE

Royle et al. (2012) published an important criticism of the

MaxEnt algorithm: it does not estimate the statistic of inter-

est, which is the probability of occurrence of a species, given

a set of environmental conditions or habitat variables.

Instead, MaxEnt estimates an index of relative habitat suit-

ability, based on presence-only data. Phillips et al. (2006)

were careful to highlight this distinction, but unfortunately,

the scaled index that MaxEnt creates (‘logistic output’) has

almost always been interpreted by the user community as

the probability of occurrence (Yackulic et al., 2013).

Although suitability and probability of occurrence may be

related to one another, the suitability index tends to over-

estimate the true occurrence probability outside of a simu-

lated geographical range, but under-estimates it within the

range (Royle et al., 2012). This bias may reflect the fact that

MaxEnt default settings for logistic output are based on an

overall prevalence s = 0.5. It is troubling that when the Max-

Ent and MaxLike algorithms were applied to the same

empirical data sets, their predictions were very different from

one another (Fitzpatrick et al., 2013). In these empirical

comparisons, cross-validation analysis with random testing

and training partitions of presence-only data favoured the

MaxLike algorithm. However, MaxLike is not without its

own problems. Hastie & Fithian (2013) argued that parame-

ter estimates from the underlying parametric log-linear

model of MaxLike can be severely biased if the true func-

tional form of the data is not log-linear. Fitzpatrick et al.

(2013) found that there can be large uncertainty in estimates

of occurrence probabilities, especially for locations that are

geographically distant from the sampled area. However, such

uncertainty may accurately reflect the limitations of the data,

whereas the uncertainty in MaxEnt estimates seems suspi-

ciously low.

Merow & Silander (2014) showed that the underlying

models of MaxEnt and MaxLike are similar to one another,

and that the slope coefficients from both are comparable to

those generated by a generalized linear model (GLM) applied

to presence/absence data. Both logistic regression and Max-

Ent are formally equivalent to a model of an inhomogeneous

Poisson process (IPP; Fithian & Hastie, 2013). However, the

logistic output from MaxEnt (at least in its current configu-

ration) should not be used as an estimate of occurrence

probability, and some care must be taken to modify the

default settings of MaxEnt to generate slope values that are

comparable to those of MaxLike (Merow et al., 2013).

Although the jury is still out on these methods, we cur-

rently favour the MaxLike model for presence-only data

because, for climate change forecasting, we need to estimate

the absolute probability of occurrence, not the relative habi-

tat suitability. Two grid cells might have the same habitat

suitability index, but if the probability of occurrence is

0.9900, then both grid cells will almost certainly be occupied,

whereas if the probability of occurrence is 0.0099, both grid

cells will almost certainly be empty. It is these absolute prob-

abilities of occurrence that determine the forecasted shift in

species ecological ranges under different climate change sce-

narios. With presence-only data derived from geo-referenced

specimen records, the sampling area for estimating occur-

rence probabilities is undefined, and this is a problem for

both MaxEnt and MaxLike. Operationally, the area often will

be associated with the grid size for sampling of environmen-

tal data in the study.

The criticisms that Hastie & Fithian (2013) raised against

MaxLike seem (to us) comparable to those that arise when

fitting a simple regression model to a small data set for

which the relationship between x and y may not be strictly

linear. Because MaxEnt with its current default settings is

not estimating the probability of species occurrence (Merow

& Silander, 2014), we believe its output is not appropriate

for estimating range expansions and contractions under

scenarios of climate change.
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MaxEnt, MaxLike and other complex, non-intuitive alter-

natives are necessary because ecologists continue to work

mostly with presence-only data (Newbold, 2010). If the data

set includes both presences and absences, then even a simple

logistic regression model (Pearce & Ferrier, 2000) is on fir-

mer statistical ground than a MaxEnt or MaxLike model fit

to presence-only data. With presence/absence data randomly

sampled across the landscape, logistic regression in the

framework of GLMs can be readily fit (McCullagh & Nelder,

1989) to estimate the probability of occurrence. Moreover,

well-established geostatistical models (Diggle & Ribeiro,

2007) can be used to incorporate endogenous spatial auto-

correlation, which is not explicitly accounted for in the

mainstream SDM framework. Analyses of spatial autocorrela-

tion are important because these kinds of models can poten-

tially outperform traditional climate-based models of species

occurrence and abundance (Bahn & McGill, 2007).

Looking beyond the current statistical controversy over

how to analyse presence-only data, the basic modelling

framework of SDMs in general has been criticized on a num-

ber of grounds, including: assuming that detection probabili-

ties equal 1.0 (Royle & Dorazio, 2008), failing to incorporate

biotic interactions (both positive and negative) that can limit

range distributions (Ara�ujo & Luoto, 2007), unrealistically

assuming that populations have reached an equilibrium dis-

tribution with respect to climate (Svenning & Sandel, 2013),

ignoring heterogeneity in population and genetic structure in

different parts of a species geographical range (Hampe &

Petit, 2005) and assuming a lack of dispersal constraints (Pa-

gel & Schurr, 2012). Incorporating molecular data addresses

only the fourth of these assumptions, but it represents an

important step forward for modelling the effects of climate

change on species geographical ranges (Reusch & Wood,

2007).

Here, we propose sampling methods and genetic assays

for realistically representing the spatial genetic structure

(Hampe et al., 2010) of a species across its geographical

range. Next, we describe how genetic clusters can be identi-

fied based on structured demes and SNP variants within the

geographical range of a species. When the data are organized

this way, the clusters will usually generate presence/absence

occurrence vectors because most clusters will not be repre-

sented at all sampling locations. These presence/absence vec-

tors for each cluster can then be fit with a variety of stacked

SDMs to forecast range expansions and contractions that

take account of genetic variability within and among popu-

lations.

RANGE SHIFTS AND POPULATION GENETIC

STRUCTURE

Standard SDMs that use presence (or presence/absence) data

combined with geo-referenced measures of biotic and abiotic

variables assume that a species has a single environmental

niche and that all individuals respond similarly to changes in

environmental conditions. At the population genetic level,

this is equivalent to the assumption of a single panmictic

population encompassing the entire geographical range of

the species, with little or no genetic variation that may

respond to changing environmental conditions. But there is

abundant evidence that, across their geographical ranges,

many species are organized into differentiated genetic lin-

eages that may be adapted to local conditions (Linhart &

Grant, 1996; Leimu & Fischer, 2008; Hereford, 2009). More-

over, there is strong evidence that populations differ in their

adaptive potential to respond to environmental change (Pu-

jol & Pannell, 2008; Shaw & Etterson, 2012). Therefore, to

realistically model shifts in geographical ranges, we need to

incorporate this intra-specific variation. We first describe a

generic framework for the sampling and analysis of species

occurrences that are organized into genetic clusters. We then

provide some specific proposals for the kinds of genetic data

that can be collected to implement this framework.

INDIVIDUALS, CLUSTERS AND SITES

The methods we propose can be carried out by sampling of

random individuals across the geographical range of a spe-

cies. Because SDMs are inherently a regression-based

approach, there is, in theory, no advantage to replicate sam-

pling at a single location, particularly as there is an inevitable

trade-off with sampling among locations (Gotelli & Ellison,

2012). However, purely random sampling of a single individ-

ual at different locations may require too much travel in the

field and be too costly.

Moreover, collecting multiple individuals at one location

is important for more thorough sampling of genetic diversity

and detection of rare genetic clusters. Even if geo-referenced

specimens can be sampled from different locations, environ-

mental data may only be available at coarser spatial grains,

so that neighbouring samples must be binned and assigned

the same set of locations and environmental variables. Preli-

minary genetic data can be used to define an optimal strat-

egy based on the allocation of N individuals into K clusters

(the optimal_sampling() function in the R package gstudio;

Dyer, 2013).

Finally, although purely random sampling provides the

strongest basis for general inference, it may not necessarily

yield the most useful information for accurate forecasting.

Stratified sampling that emphasizes extreme environments

and locations near the edge of a species geographical range

may provide better resolution than random sampling for

forecasting the expansion and contraction of geographical

ranges with climate change.

GENETIC ANALYSES

Once the sampled individuals are in hand, their genetic iden-

tity can be assayed with a variety of molecular markers,

including microsatellites (Broman et al., 1998), amplified

fragment-length polymorphisms (AFLPs; Bonin & Manel,

2007) and single nucleotide polymorphisms (SNPs; Vignal
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et al., 2002). For ecologists, AFLPs may be the easiest

because they require no species-specific information and

allow for screening many loci at a low cost (Gugerli et al.,

2008). However, with current high-throughput sequencing

technologies (e.g. Illumina), it is becoming equally cost-effec-

tive to collect SNP data using restriction-associated digestion

(RAD) sequencing (Peterson et al., 2012) or genotyping-by-

sequencing (GBS; Elshire et al., 2011).

We personally favour the use of SNPs because they pro-

vide additional fine-scale resolution of population genetic

structure, but for the purposes of identifying major genetic

clusters, any of these methods can be used for the analyses

we propose here. However, we appreciate that the majority

of SNPs are selectively neutral with respect to geography

(Coop & Ralph, 2012), so that non-random spatial patterns

of SNPs may reflect dispersal and demographic history,

rather than adaptive variation. Even for traits that are under

selection, fixed differences in selected traits may not remain

after neutral demographic history is taken into account (e.g.

Coop et al., 2009). So there is certainly a risk that correlates

of population genetic structure with contemporary environ-

mental variables will be confounded with the effects of his-

torical demographic processes (Dyer et al., 2010). On the

other hand, teasing apart the role of neutral and selective

forces in structuring populations will surely give us better

forecasting tools than current methods that ignore genetic

data and rely only on species occurrence records.

The data structure for these analyses consists of a matrix

in which each row is an individual, and each column is an

allelic variant. Different columns might correspond to single

nucleotides for SNPs, DNA fragment-length polymorphisms

for AFLPs and simple sequence repeats for microsatellites.

The entries in this data matrix indicate the genetic variant

that was scored for each individual at each allelic variant.

Programs such as structure (Pritchard et al., 2000),

InStruct (Gao et al., 2011) and GeneLand (Guillot et al.,

2012) use these data to assign individuals to different genetic

clusters, although care must be taken in the use of these pro-

grams (see Gilbert et al., 2012). Importantly, all of these pro-

grams assign individuals with admixtures to multiple

clusters. The admixtures reflect the different ancestry and

gene clusters represented by a single individual. In contrast,

a graph-theoretic approach such as PopGraph (Dyer & Na-

son, 2004) evaluates the connectedness of populations based

on their genetic covariances. Groups of connected popula-

tions can then be used as the basis for ecological modelling,

as in Sork et al. (2010).

Regardless of which kind of genetic data are used or what

kind of statistical algorithm is used to create the clusters,

such analyses assume that: (1) individuals and populations

are sampled randomly within the geographical range of the

species; and (2) the genetic differences among the clusters

potentially reflect adaptive variation to different abiotic or

biotic conditions locally present within the geographical

range of the species (Hancock et al., 2011).

PRESENCE/ABSENCE DATA AND THE SAMPLING

OF EMPTY SITES

Sampling individuals from multiple geo-referenced popula-

tions within the genetic range of a species generates a stan-

dard ‘presence-only’ data set that can be combined with

abiotic layers for a standard analysis of presence-only data.

However, once the genetic clusters have been delineated,

each group can be analysed as a set of presence/absence data

because it is unlikely that any of the groups will be repre-

sented at every site. We emphasize that such an analysis

does not impute ‘pseudo-absences’ to locations where no

sample information is available (the typical situation with

presence-only occurrence data). Instead, these are true sam-

ple zeros, which represent sites where a particular genetic

cluster has not been detected with standardized sampling

effort (although it might have been with more intensive

sampling).

This may seem like a trivial observation, but it means that

genetic sampling of populations across the geographical

range of a species will yield presence/absence data for geneti-

cally delineated groups. It is not necessary to use the compli-

cated (and controversial) algorithms to analyse such data.

Instead, the probability of occurrence of each group can be

estimated in a straightforward way with a GLM for presence/

absence data. Thus, genetic sampling provides an effective

operational solution to the problem of obtaining presence/

absence data to analyse the probability of occurrence. Clus-

ters designated by genetic analysis may be spatially aggre-

gated in different subregions of the geographical range,

although this is not a requirement for analysis, and should

not be used as a method for designating the clusters. Unless

the clusters delineated by genetic analysis are perfectly allo-

patric and do not co-occur, at least some of the sampled

sites will support more than a single cluster.

In addition to the presence/absence data generated by the

delineation of groups within the geographical range, aug-

menting the sampling beyond the known or suspected geo-

graphical margins of the species ranges is still very

important, for two reasons. First, if abiotic conditions

beyond the range margin do not differ from conditions

within the contemporary geographical range, dispersal barri-

ers or biotic interactions may be preventing further range

expansion (Gaston, 2009; Marsico & Hellmann, 2009). If

populations can be experimentally transplanted beyond the

geographical range boundary, much stronger conclusions can

be drawn about the proximate causes of range boundaries

(Stanton-Geddes et al., 2012; Hargreaves et al., 2014). Sec-

ond, sampling beyond the existing range boundaries is

important because range shifts are already under way with

climate change, and we need accurate baseline data to estab-

lish the trajectory of ongoing range expansions and contrac-

tions.

Nonetheless, it is still a difficult question to decide how

much sampling should be done beyond the range boundaries
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of a species, and thus how much additional ‘absence’ data

should be included in the statistical analysis. On the one

hand, including lots of absence data may tend to lead to

over-fitting of climatic variables and simply demonstrate that

temperate species are unlikely to occur in tropical areas

(Bahn & McGill, 2007). Data sets with too many absence val-

ues from extreme climate regions may also obscure effects of

metapopulation dynamics (Hanski & Ovaskainen, 2000), lim-

ited dispersal (Fenster et al., 2003), philopatry (Weatherhead

& Forbes, 1992) and other endogenous processes that can be

expressed as spatial autocorrelation. As Bahn & McGill

(2007) have shown, models of spatial variation in abundance

of North American birds that contain only spatial autocorre-

lation can often outperform species distribution models that

include standard climate variables and assume that samples

are statistically independent of one another.

On the other hand, many climate models do forecast

strong changes in abiotic variables over the next century,

leading to the possibility of no-analogue climates and com-

munities (Urban et al., 2012), for which there is already

abundant evidence from the fossil record (Williams et al.,

2013). Thus, some effort should be made to include more

spatially varied sampling to encompass some of the potential

conditions that arise from these forecasts. Whatever decision

is made about sampling, forecasting models should certainly

explore the consequences of including versus excluding

absence data or training data that are collected beyond the

current range boundaries of a species (Radosavljevic &

Anderson, 2014).

MODELLING SPECIES RANGE LIMITS WITH

GENETICALLY DISTINCT CLUSTERS

Although a variety of methods can be used to estimate the

probability of species occurrence with simple presence/

absence data, we favour a GLM with a binomial distribution

and a logit link function (McCullagh & Nelder, 1989). This

model properly captures the variance structure of presence/

absence data, allows for model selection with the Akaike

information criterion (AIC) for a variety of linear or polyno-

mial predictor variables, and allows for modelling of spatial

autocorrelation [see Zuur et al. (2009) for details and exten-

sions]. At the level of individual genetic markers, Joost et al.

(2007) use similar regression approaches for associations of

allelic frequencies at marker loci and environmental variables.

This kind of model could be applied separately to each

genetic cluster, raising the interesting possibility that differ-

ent clusters may be best fit with different sets of predictor

variables. The prediction for each of the m clusters is Pkj, the

probability that cluster k is present in location j. To forecast

range shifts under climate change, the set of prediction sites

can be expanded beyond the original set of sites where the

data were collected.

Next, we wish to predict the probability that the species as

a whole occurs in a particular location. Following the

method of Pearman et al. (2010), this joint probability is:

PðoccurrenceÞj ¼ 1�
Ym

k¼1

ð1� PkjÞ

which is the probability that at least one of the m clusters is

present at site j. As in other SDM analyses, these probabili-

ties can be used in conjunction with forecasts based on

future climate scenarios (Collins et al., 2006), or hindcasts

based on palaeoclimate models (Williams et al., 2013).

A related type of diversity index would be the expected

number of groups in each location:

Eðnumber of groupsÞj ¼
Xm

k¼1

Pkj

Both of these calculations assume that the occurrence

probabilities for each cluster are independent (or at least un-

correlated). However, with natural selection, this might not

be the case, because the prevalence of one group or genotype

may occur at the expense of other groups (Waters et al.,

2013). Moreover, genetic mixing of local demes means that

the clusters themselves may be changing dynamically (Keller

& Taylor, 2010). However, these complications may be diffi-

cult to model with ‘snapshot’ data of current genetic struc-

ture.

Assignment to clusters with structure allows for the pos-

sibility of admixture: some individuals may be assigned

probabilistically to more than one cluster, which reflects

interbreeding between two previously separated populations.

To use the full information present in admixture assign-

ments, we propose using the non-zero admixture values for

each individual as weights for the SDM created for that clus-

ter. The data vector is still a binary sequence of presences or

absences, but the non-zero admixtures serve as weights. Indi-

viduals with no admixture would be given a full weight of 1,

as would individuals that are not represented in a cluster

(Table 1).

EXAMPLES AND EXTENSIONS

To our knowledge, no one has carried out precisely the pro-

tocol that we have advocated, although individual steps have

been featured in several other studies. For example, the pre-

mise of using SDMs at a lower taxonomic level than the spe-

cies has already generated promising results. Gonzalez et al.

(2011) modelled the distribution of 15 subspecies of Pero-

myscus mice in the south-eastern USA, as did D’Amen et al.

(2013) for phylogeographical lineages of 10 African mammal

species. In both studies, the composite model provided a bet-

ter fit to the data (Gonzalez et al., 2011) than species-level

models, which tended to over-predict areas of suitable habi-

tat for African mammals (D’Amen et al., 2013). However,

phylogeographical delineation of lineages may reflect genetic

similarities from the deep past. These divisions may not nec-

essarily give good results for forecasting future range shifts.

For forecasting purposes, we favour analyses of SNPs, AFLPs

or microsatellites, which will better reflect contemporary

genetic structure of populations.
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Admixture analyses of molecular markers have revealed

strong genetic and spatial structuring of populations that are

likely to respond to climate change. For example, in a study

of California valley oak, Sork et al. (2010) assayed six chloro-

plast microsatellite markers, and used PopGraph to delineate

a network of populations connected by gene flow. They then

selected four spatially and genetically distinct subgroups and

used MaxEnt to forecast future distributions under different

scenarios of climate change. Using a different approach, Jay

et al. (2012) assayed between 57 and 187 AFLPs per species

of 20 European alpine plants. They created Bayesian ancestry

distribution models (ADMs) to estimate genetic ancestry and

clusters that reflect correlations of genetic and environmental

variables. The inferred contact zone between warm and cold

clusters was expected to move 92 km with 2 °C warming

and 188 km with 4 °C warming. One strength of the ADM

approach is its focus on ancestry, thus allowing for the possi-

bility of changes in the genetic structure of populations in

the face of climate change.

SUMMARY

We have proposed a method of data collection (molecular

data from individuals collected throughout a species geo-

graphical range) and analysis (SDMs of presence/absence

data for different genetic clusters) to provide more realistic

forecasts of species ranges under climate change. We think

these methods are an improvement on the current paradigm,

which has until recently emphasized the analysis of presence-

only data with no genetic information. Our method incorpo-

rates genetic variation at a geographical scale, and uses a

GLM logistic regression analysis of presence/absence data for

the genetic clusters, which is an improvement over statisti-

cally fragile methods for presence-only data that do not

incorporate genetic information.

At least two other forecasting challenges remain. The first

problem is dispersal. Even if there is a reservoir of genetic

variation that can allow for persistence, individuals with

those genotypes have to be able to reach those regions of

suitable climate (Marsico & Hellmann, 2009). The second

problem is time. Current forecasting scenarios are static, and

examine future climates as simple snapshots, without consid-

ering the velocity of climate change (Loarie et al., 2009), and

the dynamic conditions that species will face along the way.

Perhaps spatially explicit simulation models (Gotelli et al.,

2009) that forecast climate change and limited-distance dis-

persal over short time steps may be the best approach. Look-

ing to the future, the combination of high-density molecular

data (Santure et al., 2013) and phenotype data for ecologi-

cally important traits (Etterson, 2004) may allow for

improved forecasts that take into account the potential for

evolutionary change (Hancock et al., 2011; Fitzpatrick & Kel-

ler, 2015).
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