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Abstract. Understanding how species are non-randomly distributed in space and how the resulting spa-
tial structure responds to ecological, biogeographic, and anthropogenic drivers is a critical piece of the bio-
diversity puzzle. However, most metrics that quantify the spatial structure of diversity (i.e., community
differentiation), such as Whittaker’s β-diversity, depend on sampling effort and are influenced by species
pool size, species abundance distributions, and numbers of individuals. Null models are useful for identi-
fying the degree of differentiation among communities due to spatial structuring relative to that expected
from sampling effects, but do not accommodate the influence of sample completeness (i.e., the proportion
of the species pool in a given sample). Here, we develop an approach that makes use of individual- and
coverage-based rarefaction and extrapolation, to derive a metric, βC, which captures changes in intraspeci-
fic aggregation independently of changes in the species pool size. We illustrate the metric using spatially
explicit simulations and two case studies: (1) a re-analysis of the “Gentry” plot data set consisting of small
forest plots spanning a latitudinal gradient from North to South America and (2) comparing a large plot in
high diversity tropical forests of Barro Colorado Island, Panama, with a plot in a lower diversity temperate
forest in Harvard Forest, Massachusetts, USA. We find no evidence for systematic changes in spatial struc-
ture with latitude in these data sets. As it is rooted in biodiversity sampling theory and explicitly controls
for sample completeness, our approach represents an important advance over existing null models for spa-
tial aggregation. Potential applications range from better descriptors of biogeographic diversity patterns to
the consolidation of local and regional diversity trends in the current biodiversity crisis.
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INTRODUCTION

Species are non-randomly distributed across
the globe, and understanding spatial patterns of

species diversity from ecological samples
remains a central challenge (Gaston 2000, McGill
2011, Worm and Tittensor 2018). Spatial struc-
ture in species diversity (e.g., species turnover
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from site to site) is typically quantified by one
or more metrics of compositional dissimilarity
or spatial β-diversity (Anderson et al. 2011).
Measures of β-diversity offer a mathematical
link between local (i.e., α) and regional (i.e., γ)
species diversity and can, for example, shed
light onto the metacommunity processes that
shape biological assemblages (Chase and Myers
2011) inform biodiversity conservation (Socolar
et al. 2016), and help understand the provision-
ing of ecosystem functions and services (Mori
et al. 2018).

Although β-diversity is conceptually appeal-
ing, its quantification and interpretation are often
ambiguous (Tuomisto 2010a, b, Anderson et al.
2011). Whittaker’s (1960) multiplicative β-
diversity (γ/α), for example, is commonly
thought to represent the sort of community dif-
ferentiation that arises due to non-random distri-
butions of species (e.g., species turnover or
intraspecific spatial aggregation). However, this
and other measures of β-diversity are also influ-
enced by the size and number of samples, the
size of the regional species pool, the shape of the
regional species abundance distribution (SAD),
and the number of individuals captured by the
samples (McGill 2011, Chase and Knight 2013,
Chase et al. 2018). This makes it a challenge to
compare and interpret patterns of β-diversity
and related measures along biogeographic gradi-
ents (e.g., Kraft et al. 2011). To disentangle the
effect of spatial aggregation from the non-spatial
components that influence β-diversity (SAD or
relative proportion of rare species, species pool
size), empirical studies have frequently adopted
null-modeling approaches that compare the
observed patterns against a null expectation that
simulates spatial randomness by shuffling indi-
viduals among sites (Chase et al. 2011, Kraft
et al. 2011). However, the exact formulation of
the null expectation and its deviation (β-
deviation) remains debated (Kraft et al. 2012,
Qian et al. 2012, Tucker et al. 2016, Mori et al.
2018, Xing and He 2021). In particular, the null
model approach has been criticized because it
overlooks the influence of the completeness of
the samples (Ulrich et al. 2017, Sreekar et al.
2018).

Much of the ambiguity surrounding measures
of β-diversity and its null expectations can be
understood in terms of sampling effects and

sample completeness (i.e., the proportion of spe-
cies in the species pool captured by sampling).
For instance, regions with large species pools are
expected to exhibit high β-diversity simply
because local samples only capture a small and
incomplete portion of the total diversity; this can
lead to strong, but spurious differentiation
among local samples (Chase and Myers 2011,
Kraft et al. 2011). This is not to say that this kind
of sample differentiation is not meaningful, but it
reflects the species pool (or the inability of local
samples to sample it) rather than non-random
species distributions. Similarly, sampling effects
can “inflate” metrics of β-diversity when there
are many rare species in an assemblage, or when
the total community density is relatively low
(i.e., widespread species remain undetected in
most samples) (Barwell et al. 2015). Although
such sampling effects are ubiquitous in ecologi-
cal studies (Colwell and Coddington 1994,
Gotelli and Colwell 2001), sampling theory is not
well developed with respect to β-diversity
(Wolda 1981, Beck et al. 2013). For example,
Chao and Chiu (2016) developed a framework to
unify different approaches to community differ-
entiation, but they state clearly that their
approach ignores such sampling issues. There
have also been attempts to develop asymptotic β-
diversity metrics (Chao et al. 2005), but these
have been found to show strong biases when
tested on simulated and empirical data (Cardoso
et al. 2009, Beck et al. 2013). While rarefaction-
based approaches are commonly used to address
sampling effects at a single scale by standardiz-
ing diversity to a common number of individuals
(Gotelli and Colwell 2001) or to equal levels of
sample completeness (Chao and Jost 2012), these
approaches have been rarely applied to concepts
related to β-diversity (but see Olszewski 2004,
Dauby and Hardy 2012, Stier et al. 2016, Chase
et al. 2018). This is despite the fact that the null
models used in detecting deviations from ran-
dom expectations in β-diversity(e.g., Kraft et al.
2011, Xing and He 2021) are based on largely
similar concepts (i.e., difference between
observed and expected measures of diversity).
In what follows, we consider non-random spa-

tial distributions through the lens of the
individual-based rarefaction curve and combine
existing approaches (Chase et al. 2018, McGlinn
et al. 2019) with coverage-based standardization.
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Specifically, we compare rarefaction curves taken
from subsets of samples (i.e., an α-scale curve) to
those from the entire set of samples (i.e., a γ-scale
rarefaction curve), using a constant γ-scale cover-
age (i.e., an estimate of sample completeness).
From this, we obtain a metric, which we call βC,
that estimates the degree of spatial structure in
the assemblage independently of the species pool
size and the SAD. We emphasize that our goal
here is not to develop a better measure of β-
diversity per se, as it is true that Whittaker’s β-
diversity and relatives have many useful proper-
ties for discerning biodiversity scaling (e.g., Jost
2007, Tuomisto 2010a, b, Chao and Chiu 2016).
Instead, our goal is to develop a measure that
allows us to discern the magnitude of spatial
structuring within a given regional assemblage.
Building on rarefaction and sampling theory has
the advantage that we can evaluate sample com-
pleteness and bypass the shuffling algorithms
and estimates of beta-deviation inherent to previ-
ous null-modeling approaches. We test our
method on simulated spatial point patterns with
different degrees of spatial structure (intraspeci-
fic spatial aggregation) and varying species pool
sizes and apply it to two empirical data sets to
examine variation in spatial structure along a lat-
itudinal gradient of tree diversity.

INDIVIDUAL-BASED RAREFACTION AND
EXTRAPOLATION (IBRE)

Our approach is based on individual-based
rarefaction and extrapolation (IBRE), which is a
common method to standardize species richness
estimates (Hurlbert 1971, Gotelli and Colwell
2001, Chao and Jost 2012). IBRE curves describe
the nonlinear scaling relationship between the
number of individuals in a sample and expected
species richness (i.e., rarefied richness). The
shape of the curve is determined by the size of
the species pool and the relative abundances of
species in that pool, which is often referred to as
the species abundance distribution (SAD, McGill
et al. 2007). The slope at any point along the
curve is related to the estimated sample com-
pleteness for the number of individuals sampled
at that point (Chao and Jost 2012). For smaller
than observed sample sizes, the expected num-
ber of species can be interpolated using the fol-
lowing formula (Hurlbert 1971):

Sn ¼ Sobs� ∑
Xi ≥ 1

N�Xi

n

� �
N
n

� � (1)

where Sn is the rarefied richness, or the expected
number of species for n individuals (n < N), Sobs
is the observed number of species, N is the
observed number of individuals in the sample,
and Xi is the number of individuals of the ith
species.
For larger than observed sample sizes, the

expected number of species can be estimated
using the following extrapolation formula (Chao
and Jost 2012):

Sn ¼ Sobsþ bf 0 1� 1� f 1
N bf 0þ f 1

 !n�N
24 35 (2)

where bf 0 is the estimated number of unseen spe-
cies, estimated as follows:

bf 0 ¼
N�1ð Þ
N

f 21
2 f 2

, if f 2>0

N�1ð Þ
N

f 1 f 1�1
� �
2

, if f 2 ¼ 0

8>>><>>>: (3)

and f1 and f2 are the observed numbers of single-
tons and doubletons (i.e., species represented by
one or two individuals), respectively. Extrapola-
tion of species richness is considered unbiased,
though only recommended for sample sizes up
to two times the observed sample size (Chao
et al. 2014).

SPATIAL STRUCTURE THROUGH THE LENS OF
THE IBRE CURVE

By constructing IBRE curves from samples at
two or more nested spatial scales, we can assess
intraspecific spatial aggregation (Olszewski 2004,
Dauby and Hardy 2012, Chase et al. 2018,
McGlinn et al. 2019). Like most classical
approaches to diversity partitioning, we define
α-diversity as the mean number of species within
a given sample or subset of localized samples,
and γ-diversity as the total number of species
from multiple pooled samples or local subsets of
samples (Tuomisto 2010a). Accordingly, the α-
scale IBRE curve is derived by calculating the
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IBRE curve from each individual sample and
then averaging the all samples (αSn) while the γ-
scale curve consists of Sn values calculated from
the pooled sample (γSn). The α-scale is influenced
by turnover (i.e., spatial structure) among sam-
ples within the assemblage, whereas the γ-scale
breaks up any spatial structure by randomly
accumulating individuals from all samples. If
species are distributed randomly among samples
(i.e., there is no aggregation), the α- and γ-scale
IBRE curves sit on top of each other (Fig. 1).
Downward and upward deviations of the α-scale
curve, then, would be interpreted as intraspecific
aggregation and overdispersion, respectively
(Chase et al. 2018, McGlinn et al. 2019). The γ-
scale IBRE is conceptually very similar to
abundance-based null expectations (Kraft et al.
2011), but it uses an analytical formula rather
than a shuffling algorithm. Furthermore, rather

than comparing the observed β-diversity to a null
distribution of β-diversity, it directly compares
the observed α-scale IBRE curve to the null
expectation given by the γ-scale IBRE curve.
Using IBRE curves (only interpolation shown

for simplicity), Fig. 1 illustrates how β-diversity
of a reference assemblage (Fig. 1A) responds to
changes in the size of the species pool (Fig. 1B),
the numbers of individuals (Fig. 1C), and
intraspecific spatial aggregation (Fig. 1D). Whit-
taker’s β-diversity (β¼ γ

α) is represented as the
height ratio of the two curves at the respective
right-hand end of the curves (dashed horizontal
lines). In each of the four examples, β > 1, but for
very different underlying reasons. Only the
assemblage underlying Fig. 1D exhibits spatial
turnover in species composition (due to aggrega-
tion). In the other cases (A-C), differentiation
only emerges due to a sampling effect (i.e., a
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Fig. 1. Examples of two-scale individual-based rarefaction curves for (A) a hypothetical species pool size of
450, and how they respond to, (B) reduced species pool size/altered SAD (species pool size of 80), (C) reduced
numbers of individuals, (D) and changes to patterns of within species aggregation. Orange curve: α-scale, black
curve: γ-scale. Dashed lines represent observed species richness at α- and γ-scales, and Whittaker’s β-diversity (β)
can be illustrated as the height ratio of the two. βSn values are calculated for n = 250 individuals on all panels
(dashed vertical lines). Dotted gray curve in panel C: reference curve (from A) to aid comparison.
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“more-individuals” effect between the α-scale
and γ-scale).

Due to the nonlinear shape of the IBRE curve,
the sampling effect depends on the regional SAD
(Fig. 1B) and the number of individuals sampled
(Fig. 1C). Chase et al. (2018) suggested that when
calculated at a common number of individuals
(n), the ratio of rarefied richness (Sn) calculated
between the γ- and α-scales, termed βSn , could
provide an indication of the degree of intraspeci-
fic aggregation, or non-randomness in the distri-
bution of species in the assemblage, independent
of any sampling effect (see also McGlinn et al.
2019). βSn is related to metrics developed by Ols-
zewski (2004) and Dauby and Hardy (2012) who
also assess the differences between γ and α IBRE
curves. When assemblages have a random spa-
tial structure, βSn is expected to equal 1 regard-
less of species pool and sample size (Fig. 1A-C).
Conversely, βSn values larger than 1 reflect spatial
aggregation or species turnover among sites in
the region (Fig. 1 D).

While the deviation between α- and γ-scale
IBRE curves (i.e., βSn ≠ 1 is due to spatial struc-
ture, its magnitude is contingent on the value of
n and the shape of the curves (i.e., the size and
evenness of the species pool). Thus, as we will
illustrate below, βSn is biased when comparing
the degree of aggregation among regions where
species pools and shapes of the γ-scale IBRE
curves change (e.g., along biogeographical gradi-
ents). To visualize this problem, consider two
assemblages each composed of two patches, but
which differ in the size of their regional species
pool (500 vs. 100 species Fig. 2A, B, respectively).
Supposing that both assemblages have complete
species turnover between their respective
patches, Fig. 2 shows the IBRE curves that we
would expect if we sampled 500 individuals
from each patch in the large (Fig. 2A) and small
(Fig. 2B) species pools. Note how the γ-curve
from the small species pool is much closer to its
asymptote than the one from the large species
pool (slope of gray tangential lines). This
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Fig. 2. βSn is affected by species pool size in aggregated communities. Two-scale IBRE curves for (A) a large
species pool and (B) a small species pool. Solid curve: γ-scale; dashed curve: α-scale; dashed vertical gray line:
number of individuals (n = 500) used for the calculation of βSn (i.e., the ratio of the horizontal dashed lines). Gray
solid line shows the slope of the γ-scale IBRE that relates to sample coverage (the steeper the slope of this line,
the less complete the sample). (C) βSn plotted as a function of the corresponding sample size (n).
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difference in completeness has implications for
the values of βSn . Although both assemblages are
maximally and equally structured at the patch
scale, the relative deviation between α and γ is
substantially higher in the small species pool
(indicated by βSn ). Asymptotically, both assem-
blages have a theoretical β-diversity of 2 (i.e.,
complete turnover), but at any common sample
size, βSn differs between them due to the differ-
ence in sample completeness that is associated
with species pool size (Fig. 2C).

COVERAGE-BASED RAREFACTION AND
EXTRAPOLATION

To account for the differences in species pool
size and sample completeness, we extend βSn to
include the concept of coverage-based rarefaction
(Chao and Jost 2012). Sample coverage is a mea-
sure of sample completeness that ranges from 0
to 1 and refers to the “proportion of the total
number of individuals in a community that
belong to the species represented in the sample”
(Chao and Jost 2012). Sample coverage depends
on the sample size and the species abundance
distribution of the underlying assemblage. It can
be estimated from the number of rare species in a
sample (Good 1953, Chao and Shen 2010). As it
is directly related to the steepness of the IBRE
curve, expected coverage can also be estimated
for any sample size along the curve using the fol-
lowing equations (Chao and Jost 2012).

Cn ¼
1� ∑

Xi ≥ 1

Xi

N

N�Xi

n

 !
N�1

n

 ! , for interpolation n<Nð Þ

1� f 1
N

N�1ð Þ f 1
N�1ð Þ f 1þ2 f 2

� �n�Nþ1

, for extrapolation ðn>NÞ

8>>>>>>>>>><>>>>>>>>>>:
(4)

where Cn is the expected coverage for a subsam-
ple of sample size n. N is the total number of
individuals in the sample, Xi is the number of
individuals of the ith species, and f1 and f2 are
the numbers of singletons and doubletons.

For coverage-based standardization, Eq. 4 can
be solved numerically to determine how many
individuals, n, are necessary to obtain a given
target coverage, Ctarget. This is computed by cal-
culating Cn for every possible n and choosing the

one that minimizes the difference between Cn

and Ctarget. Subsequently, IBRE can be used to
standardize the diversity estimate to a sample
size of n, and thus the desired coverage level
Ctarget (Hsieh et al. 2016).

INTRODUCING βC
By calculating βSn for equal γ-scale coverage,

we can resolve the species pool dependence
when making comparisons across assemblages.
Specifically, rather than keeping sample size (n)
constant when comparing across assemblages,
we instead maintain a consistent sample cover-
age at the γ-scale (Ctarget) and refer to βSn stan-
dardized by sample coverage as βC. Fig. 3
illustrates this approach using the same example
with large (Fig. 3A) and small (Fig. 3B) species
pools. By allowing n to vary between scenarios
so that we maintain a constant γ-scale coverage
(indicated by the slope of the tangential lines),
the resulting pair of βC values become practically
identical (compare with Fig. 2), which accurately
reflects that both scenarios are equally aggre-
gated at the patch scale. The advantage of stan-
dardizing γ-scale coverage becomes particularly
clear when we consider the entire scaling rela-
tionship of βC. If we quantify βC for every possi-
ble value of n and plot them against γ-scale
expected coverage, the values from large and
small species pool fall on approximately the
same line and the species pool dependence van-
ishes (Fig. 3C, compare with Fig. 2C).
To compare βC across multiple assemblages

(e.g., with different species pools), we suggest
the following protocol that makes use of interpo-
lation and extrapolation.

1. Determine the appropriate target coverage
value Ctarget for the standardization:

1.1. For each assemblage j, determine the
smallest number of individuals observed
at the α-scale and call it Nmin j .

1.2. Using Eq. 4, estimate the expected γ-scale
coverage Cn corresponding to Nmin j indi-
viduals, or up to 2Nmin j individuals if
you wish to use extrapolation (Chao
et al. 2014).

1.3. Let Ctarget be the smallest of the Cn values
across all assemblages.
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2. Calculate βC:

2.1. For each assemblage, use the inverse of
Eqn 4 to estimate the sample size nj corre-
sponding to a γ-scale coverage of Ctarget.
Exclude all assemblages for which nj ≤ 1.

2.2. Standardize γ- and α-scale species rich-
ness to nj individuals (using IBRE) to get
γSn,j and αSn,j.

2.3. Calculate βC as follows:

βcj ¼
γSn,j
αSn,j

(5)

We implemented this procedure in an R package
available on GitHub (https://github.com/t-engel/
betaC) and archived on Zenodo (https://doi.org/
10.5281/zenodo.4727184). It provides the function
“C_target” that can be used for steps 1.1 and 1.2,
and the function “beta_C” that carries out step 2.

This approach requires spatially replicated
samples with abundance data (i.e., site-by-

species matrices with abundance data), so that
one can define at least two nested sampling
scales (α and γ). We assume that the sampling
design is standardized across all assemblages.
This means there should be a consistent number
of samples per assemblage and every sample
should have the same effort (e.g., plot size and
trap nights). Furthermore, we assume a consis-
tent spatial extent at the γ-scale. If the number of
samples, or their spatial extent changes from one
assemblage to the next, users should take a spa-
tially constrained subset of the samples to keep
extents as consistent as possible.
Like most measures of community differentia-

tion, βC does not have an analytical variance esti-
mator because there are no replicates at the
γ-scale. Nevertheless, such variance is often
desired, for example, when comparing spatial
structure among different regions. To do so, we
recommend calculating a distribution of βC for
repeated random subsets of the samples. For
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Fig. 3. βC is unaffected by species pool size in aggregated communities (compare with Fig 2). Two-scale IBRE
curves for (A) a large species pool and (B) a small species pool. Solid curve: γ-scale; dashed curve: α-scale; dashed
vertical gray line: number of individuals used for the calculation of βSn (i.e., the ratio of the horizontal dashed
lines). Gray solid line shows the slope of the γ-scale IBRE that relates to sample coverage (C = 0.79 in both pan-
els). (C) βC plotted as a function of expected coverage calculated at the γ-scale. Dashed line marks the coverage
value of 0.79 used in other panels.
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example, one could use a Jackknife approach
(i.e., systematically leaving out one sample at a
time), use pairwise comparisons of samples, or
comparisons among larger subsets of samples.
While such variance can help to contextualize the
observed values of β-diversity, caution should be
taken because these calculations incorporate
some degree of non-independence. Nevertheless,
we provide an R function that carries out such
resampling procedures for any number of sam-
ples (i.e., “betaC::beta_stand”).

PROOF OF CONCEPT USING SIMULATIONS

To test the properties of βC, we simulated spa-
tially explicit assemblages that varied in the size
of the species pool and the degree of intraspecific
aggregation using multivariate spatial point pat-
terns. We used the R package mobsim (May et al.
2018) to carry out the simulations. Each simu-
lated assemblage had 4000 individuals drawn
from a lognormal SAD that was parameterized
with a given species pool size, and a coefficient
of variation equal to one. Then, we used the Tho-
mas cluster process to distribute individuals in
space, varying the degree of intraspecific spatial
aggregation through the parameter that determi-
nes the number of conspecific clusters. The simu-
lation was parameterized in a full-factorial
design, where the species pool size encompassed
every integer between 10 and 500, and the num-
ber of clusters was set to 1 (i.e., extreme
intraspecific aggregation), 4, 10, and 20. To
include a level that had no within species aggre-
gation, we also implemented a random Poisson
process to simulate completely random spatial
distributions for species. Each combination of
species pool and aggregation was replicated 3
times yielding a total of 7365 simulated commu-
nities. To sample from the regional communities,
we placed 4 sample quadrats into each simulated
community (Fig. 4A, B). We calculated Whit-
taker’s β (¼ γ

α), βSn and βC among the four samples
and examined their response to changes in spe-
cies pool size and aggregation. Following the
protocol above, Ctarget was set to 0.55 and the
sample size for βSn was 50 individuals. The R
code for the simulation is available on Zenodo
(https://doi.org/10.5281/zenodo.4727184).

All three indices (Whittaker’s β, βSn , and βC
were influenced by intraspecific community

aggregation. Additionally, Whittaker’s β and βSn
were affected by the changes in species pool size,
whereas βC was insensitive to this parameter.
While both Whittaker’s β and βSn responded to
the degree of spatial aggregation and the species
pool, they did so in contrasting ways, which is
consistent with theoretical expectations (Fig. 4C).
For Whittaker’s β, the effect of the species pool
decreased with increasing aggregation. This
reflects that for strongly aggregated species distri-
butions, the samples will always show high turn-
over regardless of the species pool. In contrast,
under random species distributions, “spurious”
(i.e., SAD related) sample differentiation is more
likely to occur when there are many rare species
that only occur in some of the samples (i.e., in
large species pools). For βSn, the effect of the spe-
cies pool increased with increasing aggregation;
as long as species are randomly distributed, βSn is
always one because the α IBRE curve falls onto
the γ-scale. However, when there is a deviation
between the curves (as a result of aggregation), its
magnitude for a given number of individuals (n)
depends on the shape of the IBRE curves, which
in turn depend on the species pool (Fig. 3). Only
βC captures the spatial structure of the simulated
communities independently of the species pool
size because, by incorporating sample coverage, it
adjust for the species pool dependence.
We examined the robustness of βC using an

alternative SAD (log-series) and by simulating
spatial aggregation using the mean displacement
length of the Thomas process (Appendix S1). The
results were qualitatively similar: βC, but not
Whittaker’s β or βSn, responded to the changes of
aggregation independently to changes in the
SAD parameter (i.e., Fisher’s α). Additionally, we
applied the null model by Kraft et al. (2011) to
the simulated data and found that the measure
of β-deviation, like βC, responded to the aggrega-
tion, but not to the species pool. Spearman’s rank
correlation between βC and β-deviation was
97.7% which suggests that both approaches are
measuring the same effect (Appendix S2).

EMPIRICAL CASE STUDIES

Next, we applied our approach to two forest
data sets with varying species pool sizes. First,
we reanalyzed the Gentry Forest plot data set
(Gentry 1988, Phillips and Miller 2002). This data

 v www.esajournals.org 8 September 2021 v Volume 12(9) v Article e03745

METHODS, TOOLS, AND TECHNOLOGIES ENGEL ETAL.

https://doi.org/10.5281/zenodo.4727184


set has frequently been used in the debate on
how to formulate appropriate null models for β-
diversity and how spatial aggregation varies
with latitude (Kraft et al. 2011, Qian and Song
2013, Qian et al. 2013, Xu et al. 2015, Xing and
He 2021). We computed Whittaker’s β and βC
among the subplots of the sites located in the
Americas. As expected from the difference in

species pool size along this gradient and shown
by previous studies (e.g., Kraft et al. 2011), Whit-
taker’s β declined with latitude (Fig. 5A). In con-
trast, βC, which controls for species pool-related
sampling effects, showed no significant change
along the latitudinal gradient (Fig. 5B). Given
this, we conclude that there is no evidence for a
change in spatial aggregation along this gradient

Fig. 4. Simulated assemblages and the response of Whittaker’s β, βSn , and βC to changes in aggregation and
species pool size. (A) Assemblage with extreme intraspecific aggregation (1 cluster per species) and (B) assem-
blage where species have random spatial distribution. Species pool, SAD, and numbers of individuals are con-
stant between (A) and (B). Squares represent sample quadrats. (C) β-diversity metrics and their response to
species pool size and intraspecific aggregation. Dots show the data. Lines show GAM fit to each metric with spe-
cies pool size as the predictor; the GAM estimated separate smoothers for each level of intraspecific aggregation.
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in these samples. Declines in Whittaker’s β with
increasing latitude appear to be mostly driven by
changes in the size of the regional species pool
rather than changes in the spatial structuring of
individuals. Importantly, although we come to
qualitatively similar results as the abundance-
based null models of Kraft et al. (2011) and Xu
et al. (2015), our method has the advantage of
explicitly incorporating an estimate of sample
completeness. Rather than simply shuffling site-
by-species matrices, users are confronted with
the completeness of their samples as part of the
analytical workflow, and prior to interpreting
any results. In this case, our analysis provides
quantitative evidence for the argument that these

types of forest plots may be too small to robustly
compare spatial patterns of diversity and any
associated differences in community assembly,
especially in the tropics (Tuomisto and Ruoko-
lainen 2012). Ctarget is set by the site with the low-
est coverage (Cn), which for the Gentry Forest
Plot data were Ctarget = 0.1. This means that
inferences are being drawn from a sample of
only approximately 10 percent of the individuals
in the assemblage.
For a second case study, we explored a similar

question along the latitudinal gradient, but with
larger plots, so that a more substantial fraction of
the species pool would be sampled. To do so, we
compare the spatial structuring of trees within

Fig. 5. Case studies exploring β-diversity along (A, B) a latitudinal gradient of Gentry forest plots and (C, B)
comparing Barro Colorado Island (BCI) and Harvard Forest (HF). Both examples show significant changes in
Whittaker’s β (A, C) while βC (i.e., β standardized for sample coverage) showed no significant change. Solid lines
show simple linear regressions. Boxplots show distribution of values from 1000 redraws of 10 samples, respec-
tively. Whiskers: non-outlier range; box: interquartile range: bar: median.
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the temperate forest plot at Harvard Forest (HF),
in the northeastern United States (Orwig et al.
2015), with the well-studied tropical rainforest
plot at Barro Colorado Island (BCI), Panama
(Condit et al. 2019). Because the data from HF
were from only 35 hectares, we took a 35 ha sub-
section of the 50 ha plot at BCI and found a con-
siderable difference in γ-diversity; 38 species
were present at HF and 217 species were in the
analyzed section of BCI. For both locations, we
used our resampling approach to calculate a dis-
tribution of β-diversity at the scale of ten 1 ha
subplots (using 1000 random draws with
replacement). Again, we found that Whittaker’s
β was consistently higher in the more diverse site
(BCI). While HF had an expected α-scale cover-
age of 99%, it was 90% at BCI. By interpolating
HF and extrapolating BCI (following the protocol
above), we standardized both sites to a target
coverage of 0.93 and found no meaningful differ-
ence in the corresponding βC (Fig. 5 D). In short,
as with our analyses of the Gentry data above,
but with samples that more adequately charac-
terize the assemblages, we find that the observed
differences in Whittaker’s β from temperate to
tropical forests were largely expected given the
differences in the species pool. That is, once spe-
cies pool-related sampling effects were taken into
account, there do not appear to be any meaning-
ful differences in the spatial structuring of these
two forests.

DISCUSSION AND CONCLUSIONS

Building on previous work using rarefaction
and coverage-based approaches (Chao and Jost
2012, Chao et al. 2014, Chase et al. 2018, McGlinn
et al. 2019), we developed a metric standardized
by sample coverage to quantify the degree of
intraspecific spatial aggregation, independent of
changes in the size of the species pool and the
regional SAD. Our theoretical considerations and
simulations of spatially explicit assemblages
show that βC remains unaffected by changes in
the species pool, which allows for comparisons
of intraspecific aggregation along large biogeo-
graphic gradients. Our empirical case studies
suggest that the magnitude of intraspecific
aggregation does not change along a latitudinal
gradient of forest plots. Importantly, our method
requires analysts to determine the target

completeness using information contained in the
samples from their study. In the case of the com-
monly used Gentry plots, this shows that the
samples cover only a small fraction (10%) of the
individuals in the underlying assemblages, and
may therefore of limited use for making infer-
ences about their small-scale spatial structure
(Tuomisto and Ruokolainen 2012).
Our approach represents an important

advance over existing methods to measuring
spatial aggregation because of its strong link to
existing biodiversity sampling theory. Specifi-
cally, we use the γ-scale rarefaction curve as an
analytical null model for the expected α-diversity
in the absence of spatial structure. While concep-
tually similar to existing null models, our
approach has several advantages. For example, it
bypasses the computation of Whitaker’s beta and
subsequently β-deviation. Instead, we measure
the deviation between γ- and α-scales directly
from the IBRE curves. βC can be thought of as the
factor by which spatial structure has reduced α
diversity compared with the random expecta-
tion. This makes it more intuitive than β-
deviation (Kraft et al. 2011, Xing and He 2021)
because it can be directly interpreted as an effec-
tive number of distinct communities (Jost 2007),
conditional on the estimated sample coverage.
Additionally, our approach explicitly incorpo-
rates an estimate of sample completeness into the
analytical workflow, which means that the ana-
lyst is confronted with the limitations of the data.
Ulrich et al. (2017) have argued that null model

approaches are limited in their ability to disen-
tangle species pool and aggregation effects,
unless they incorporate external data on the sizes
of the relevant species pools. Here, we make use
of the idea that the sample itself can also provide
an estimate of its completeness (Good 1953, Chao
and Jost 2012). Our method uses the shape of the
IBRE curve, itself determined by the SAD, to
draw inferences for an estimated constant frac-
tion of the individuals in the underlying commu-
nity (i.e., a constant sample coverage). This
approach to standardization implicitly assumes
that there is an asymptote in species diversity
(Chao and Jost 2012). While this assumption is
mathematically convenient, it cannot strictly be
true; due to species aggregation at higher scales,
we will always find more species with more sam-
ples, until the entire global pool is sampled
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(Williamson et al. 2001). Nevertheless, βC does
not extend to the asymptote itself, but merely
employs a useful approximation of sample com-
pleteness via sample coverage. As spatial struc-
ture is an inherently scale-dependent
phenomenon, with this approach we can only
measure it at the spatial grain prescribed by the
samples (i.e., spatial structure within the γ-scale).
Even when extrapolation is used, the spatial
grain of the data remains unchanged. For a scale-
dependent examination of spatial aggregation,
we recommend comparing results obtained from
different spatial grains.

While βC isolates the degree of spatial aggrega-
tion, it does not have some of the properties that
are sometimes considered essential for β-
diversity metrics (Jost 2007, Tuomisto 2010a). For
example, traditional β-diversities range between
unity and the total number of sampling units,
and they can be transformed into N-community
(dis)-similarities in the range [0,1] (Jost 2007,
Chao and Chiu 2016). In contrast, βC can only
reach the number of samples when the samples
have a coverage of 1 (i.e., Ctarget is 100%) (see
Appendix S3). In such cases, where the curves
have reached an asymptote, βC equals Whit-
taker’s β and one can derive the corresponding
(dis-)similarity. However, for incomplete sam-
ples, the N-community transformation of β-
diversity is generally not recommended (Chao
and Chiu 2016), and we consider it a strength of
our method that it exposes such situations. Only
in the rare cases where Ctarget is 100%, classical β-
diversity metrics and pairwise (dis)-similarities
will not be affected by the species pool.

Although our approach accounts for differ-
ences in sample completeness, it still requires
standardized sampling or post hoc standardiza-
tions (i.e., rarefying samples to the same number
and spatial extent) to make valid inferences. The
sampling effects we treat here arise passively
due to differences in species pools, and not as a
result of different sampling strategies and/or
effort. For example, the forest plots in our case
studies were completely sampled in the sense
that every tree was counted in a given area or
subplot. However, with respect to the regional
species pool or even just the observed γ diversity,
a subplot of a given size in the tropics is likely a
much less complete sample, compared to an
equally sized subplot a temperate region, even

when all individuals are counted in each subplot.
It is this interaction of sampling effort and the
size of the species pool that leads to the null
expectation of increasing sample differentiation
with increasing species pool size, and for which
our method adjusts.
In conclusion, our approach allows us to

explicitly disentangle non-random spatial pat-
terns of species diversity (e.g., intraspecific
aggregation) amidst variation in species pool size
and associated sampling effects. Together with
other diversity metrics sensitive to diversity com-
ponents such as the SAD and total community
abundance (Chase et al. 2018, McGlinn et al.
2019), βC allows deeper insights into how spatial
structuring within communities influences pat-
terns of biodiversity and its change. Applications
could, for example, shed light onto the assembly
processes that govern (meta-)communities along
biogeographic gradients and contribute to a bet-
ter understanding of the spatial diversity pat-
terns that underlie the scale-dependent
biodiversity trends observed during the current
biodiversity crisis.
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