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Estimating biodiversity change across the planet in the context of wide-
spread human modification is a critical challenge. Here, we review how
biodiversity has changed in recent decades across scales and taxonomic
groups, focusing on four diversity metrics: species richness, temporal turn-
over, spatial beta-diversity and abundance. At local scales, change across
all metrics includes many examples of both increases and declines and
tends to be centred around zero, but with higher prevalence of declining
trends in beta-diversity (increasing similarity in composition across space
or biotic homogenization) and abundance. The exception to this pattern is
temporal turnover, with changes in species composition through time
observed in most local assemblages. Less is known about change at regional
scales, although several studies suggest that increases in richness are more
prevalent than declines. Change at the global scale is the hardest to estimate
accurately, but most studies suggest extinction rates are probably outpacing
speciation rates, although both are elevated. Recognizing this variability is
essential to accurately portray how biodiversity change is unfolding, and
highlights how much remains unknown about the magnitude and direction
of multiple biodiversity metrics at different scales. Reducing these blind
spots is essential to allow appropriate management actions to be deployed.

This article is part of the theme issue ‘Detecting and attributing the
causes of biodiversity change: needs, gaps and solutions’.
1. Introduction
Developing fit for purpose biodiversity policy requires accurate estimates of
how biodiversity has changed in the context of widespread human modifi-
cation of the planet [1]. Accurate estimates of biodiversity and its rates of
change is key for the development of the economic policies that fully incorpor-
ate natural capital, as advocated by Dasgupta & Levin in this issue [2]. Meeting
this challenge means recognizing that biodiversity is a multi-dimensional
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concept. As we accumulate data and inference tools, it is
increasingly clear that patterns of biodiversity change are
complex and heterogeneous. While some biodiversity metrics
are changing in synchrony at some scales, other metrics,
scales, or methods show opposite trends [1]. Here, we aim
to review progress towards a data-driven consensus on biodi-
versity change, as well as uncover where gaps remain.
Specifically, we provide an overview of biodiversity change
patterns from the recent literature and assess which trends
are consistent in space and time, and which are not.

About a decade ago, the view of ubiquitous biodiversity
declines at local scales was challenged by two independent
synthetic global meta-analyses [3,4]. Both papers compiled
biodiversity time series across many sites from across the
planet spanning periods in the twentieth and twenty-first
century. With largely non-overlapping data, both analyses
found that the number of places where species richness was
declining over time was approximately the same as the
number of places where species richness was increasing,
with effectively no observed net change in most places.
Both papers also found a similar pattern with other diversity
metrics (e.g. Simpson and Shannon diversity when available),
leading to the conclusion that there was little evidence for
systematic loss of local biodiversity within the sites and
time frames examined. Such balance in gains and losses of
species was previously reported. For instance, lack of evi-
dence for systematic declines in local species richness is
consistent with the suggestion by Sax & Gaines [5] that
global declines in richness were not reflected at smaller
spatial scales, because losses are balanced by gains of immi-
grant species. Moreover, evidence for stability in the number
of species inspired the hypothesis that richness is under some
form of regulation over time [6], and Gotelli et al. [7] found
a consistent signal of species richness and abundance
regulation across 59 assemblage time series.

Despite the consistency with some previous literature, the
results of Vellend et al. [3] and Dornelas et al. [4] contradicted
the widespread expectation of biodiversity loss across scales,
and therefore were controversial (e.g. [8–10]). Some criticisms
pointed to geographical biases and the short duration of the
time-series examined [8]; others focused on the disparity
between their results and the prevailing wisdom that biodi-
versity is declining [10]. Specifically, the finding of no net
change, on average, in local-scale species richness appeared
to be in conflict with: (i) projections of global-scale biodiver-
sity trends based on assessments of extinction risk (e.g. [11]);
(ii) the pervasive declines estimated from space-for-time
approaches evaluating the influence of various anthropo-
genic drivers, such as land-use change (e.g. [12], see box 1);
and (iii) the widespread disappearing populations of animals
[33] and apparent declining abundances of vertebrate
populations [34].

The controversy over temporal trends in local richness
changes through time triggered a wave of new analyses
and syntheses of biodiversity change. It has also reinforced
the point that different approaches to measuring biodiversity
change provide different insights into how assemblages are
being restructured. Here, we provide an overview of this lit-
erature, and take stock of what has been learned in the
process. We aim to identify where there is agreement in the
literature and where uncertainty is highest, with the overall
goal of highlighting critical gaps in our understanding of
how biodiversity is changing in the Anthropocene. While
we (the authors of this study) share a position in the contro-
versy, this is not a locked-in debate (sensu [35]); our goal
here is to synthesize the substantial scientific advances in
this area. We do not underestimate the threats to biodiversity
we currently face, and we share the goal of informing conser-
vation policy by scientific evidence. We hope to build on
recent efforts to pursue consensus (e.g. [10,29,36,37]), as the
biodiversity change field expands beyond this single debate.
We aim to identify which metrics have consistent patterns,
which have divergent patterns, and where important gaps in
knowledge remain. We start by highlighting the scope and
methodological caveats of our review, followed by the
review itself, focusing on different biodiversity dimensions
across spatial scales (figures 1 and 2). We end with reflections
on directions forward in this field.
2. Scope, data sources and caveats
We reviewed studies that assessed change in biodiversity in
the recent decades to chart progress of understanding about
biodiversity change. A systematic review and comprehensive
meta-analysis is beyond the scope of this study (searches
with relevant keyword combinations reveal over 20 000 publi-
cations since 2013). Instead, we aimed to synthesize compiled
papers through the collective knowledge of the authors, com-
bined with more targeted searches. We recognize the potential
for bias in this approach, and attempt to minimize it by first
defining what is within the remit of our study.

(i) Our study is focused on observational assessments of biodi-
versity change through time, rather than those predicted by
theoretical, conceptual or experimental studies. The under-
lying data in the studies we include are observations of
organisms sampled over time using consistent methods.

(ii) Our study concerns change in biodiversity through time.
As such, we focused on methodologically- and effort-con-
trolled observational time series including: groups of
organisms that have been observed over multiple years,
resurvey data where locations sampled in the past were
resampled more recently, and regional check-lists from
two or more periods at larger scales (see point (v)). An
approach often used to infer biodiversity change involves
space-for-time substitutions, whereby locations with differ-
ent levels of a given driver (e.g. land use) are compared.
This approach implicitly assumes that changes in the
driver would have led to the observed changes in biodiver-
sity had they occurred over time. We do not include space-
for-time studies in the main section of our review, but in
box 1, we discuss advantages and challenges of this
approach, as well as how the patterns that emerge from
space-for-time data compare to those that emerge from
temporal data.

(iii) Our study concentrates on the recent part of the Anthro-
pocene. We use the term Anthropocene broadly as
referring roughly to the period starting in 1850, although
most of the studies we include cover the past 50 years
(we highlight in the text where longer timescales were
examined). As with any temporal analysis, an important
question concerns the use of appropriate baselines. This
question has its roots in the issue of shifting baselines
[98], whereby recent observations cannot capture change
that occurred before observations started. In the context



Box 1. Space for time

Many different types of data have been used to infer biodiversity change in the face of anthropogenic change, each with
advantages and disadvantages [13]. Here, we have emphasized temporal comparisons, which are the most direct way to esti-
mate change over time at a given site or region. Analyses of biodiversity change from time series, however, are often
criticized, primarily because (i) appropriate long-term data are often restricted in space and may not be representative of
changes occurring in some types of habitats (e.g. those that are heavily modified) and in certain ecosystem types and regions
of the world; (ii) changes in potential ecological drivers at a given site are not always known; and (iii) appropriate baselines
are not readily known, and even some of the longest time series (including checklists) only include data from a time period
after intense human impacts have already occurred [8,10,13–15]. One solution to some of these issues are analyses that can
fully incorporate temporal changes and controls on external drivers (e.g. before-after-control-impact studies), but these are
usually rather short-term and experimental in scope, preventing a full exposition of biodiversity change in the context of
ongoing drivers (but see [16] for an example of a large data synthesis following a before-after-control-impact design).

A popular approach for estimating patterns of biodiversity change has been using space-for-time substitutions [13], where
comparisons are made between sites that have received different levels of a given driver. The most comprehensive such ana-
lyses are based on the PREDICTS database [17], which have been used to estimate the influence of different levels of land-use
change on biodiversity [12,18–20]. Similar synthetic datasets comparing more and less impacted sites to infer biodiversity
change in the face of a given driver have been compiled, including alien species [21], habitat loss [22], nitrogen deposition
[23], climate change [24], hunting [25] and grazing [26] in terrestrial systems, as well as other anthropogenic influences in
marine [27] and freshwater [28] systems.

Importantly, although results are variable, these space-for-time estimates of biodiversity change point much more uni-
formly towards reductions in abundance, diversity and composition than has been typically observed in time series.
There are several possible explanations for this difference. First, many observations of biodiversity in space-for-time analyses
are taken at relatively small spatial scales and cannot necessarily be used to extrapolate outcomes at larger spatial scales,
where biodiversity losses are often much more likely to be observed relative to at larger spatial scales, where both winners
and losers of biodiversity change can be measured [21,29,30]. Second, human modifications are not randomly distributed on
the planet, and it is possible that part of the differences detected in space-for-time estimates are independent of human modi-
fications. Third, space-for-time analyses often compare biodiversity between the least modified environments available to
sample and highly modified anthromes, such that strongly modified environments normally constitute at least 50% of the
sample sites. By contrast, only 5% of monitored locations experienced a conversion of the dominant habitat type in a
global analysis of the impact of forest loss on biodiversity [31]. Given that an average of about 5.3% of the land surface
has experienced a change in land use per decade from 1960 to 2019 [32], the durations of studies is an important consider-
ation: space-for-time comparisons typically over-represent change relative to the amount of ecosystem change over 50 years,
whereas time series probably under-represent it. These and other explanations might account for why biodiversity time series
and space-for-time substitutions often lead to different answers to the question of local biodiversity change. A priority for
future research is to quantify these biases and generate combined, weighted-estimates of changes through time.
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of biodiversity change, there is no obvious solution to this
issue, because it is not clear what an appropriate baseline
should be. One could consider a time when ecosystems
had experienced minimal human influence, which would
be quite difficult to identify, as human impacts are evident
throughout the Holocene [99], and with megafaunal
extinctions stretching back tens of thousands of years
[100]. Furthermore, substantial climatic shifts have
occurred over this period, making direct comparisons
with current biodiversity patterns complex. Finally, the
unstated assumption of a pre-human influence baseline is
that nature without humans should be the goal of conser-
vation, whereas conservation science has moved to a
perspective that includes humans as part of the ecosystem
[101]. Therefore, rather than representing change relative to
any particular baseline, we focus on trends of biodiversity
in the more recent past, a timescale of significant change in
human impact on the natural world, and for which we can
effectively characterize trajectories.

(iv) We include studies from across the planet, covering the
terrestrial, freshwater and marine realms, and including
multiple taxonomic groups. However, sampling complete-
ness varies substantially across space, time and taxa. For
example, there are considerably more data in the literature
available to us for Europe and North America than for
Africa or Asia. Similarly, more studies focus on vertebrates
or plants than for most of the Tree of Life, and we lack
information on patterns of biodiversity change for most
microbes and soil microfauna [102,103].

(v) We consider four metrics identified in McGill et al. [104]
that contain complementary information: species richness,
temporal turnover in species composition, spatial differ-
ences in species composition (beta-diversity), and
abundance (numerical, biomass and cover). Our unit of
observation is usually an ‘assemblage’ (i.e. a group of co-
occurring species that typically share taxonomy and/or
habitats in which they live; [105]), but we also include
observations of populations and ecosystem extent in the
assessment of abundance trends.

(vi) Finally, to explicitly consider spatial scale, we include
studies spanning local, regional and global scales. The
spatial scale at which biodiversity is measured influences
the magnitude and even the direction of biodiversity
change [29,106,107] and is critically important for resol-
ving the aforementioned controversy [4,5,10,104]. This
scale-dependence arises because most metrics used to
quantify biodiversity exhibit a nonlinear relationship
with sampling effort and with spatial scale [30,108–110],



low

local
(a)

(b)

global

regional

grain

medium

high

Figure 1. (a) Scale and methods of biodiversity monitoring. (b) There is a wide
range of land uses (e.g. urban, agricultural) and intensity of use (high-intensity
monoculture farming, parking lots and urban centres versus rangelands and
rural villages) spanning through the exurbs and secondary forests (medium)
to old growth forests and long-standing prairies (low). Ecologists typically
sample medium to low intensity usage areas (red boxes), but large-scale
studies (green box) increasingly include the whole range of land use intensities,
up to the globe (blue box) which by definition includes all land uses and inten-
sities. Thus, biodiversity trends usually sample a greater variety of ecosystem
types with increasing grain size. (Online version in colour.)
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caused both by statistical properties of sampling processes,
as well as the ecological processes that determine how
individuals of different species are distributed in space.
Moreover, biodiversity is estimated using different
methods (figure 1), and the temporal windows of these
measurements often covary with spatial extent. For
example, local scale biodiversity is typically measured
via standard survey methods for a given taxon (e.g. quad-
rats, transects, trawls) with datasets spanning years or
decades. Larger-scale regional biodiversity estimates, how-
ever, are usually derived from presence–absence data,
often model-assisted, and change through time is usually
estimated based on regional colonizations or extinctions;
these datasets tend to span decades to centuries. Finally,
many potential drivers of biodiversity change also vary
nonlinearly with sampling scale. For example, when
measured at a small grain, land-use intensity will be rela-
tively uniform, whereas when measured at a larger
grain, a mosaic of more and less intensive uses will
combine to influence changes in biodiversity.

3. Patterns in recent biodiversity change
We organize our review in four sections, one for each of the
biodiversity metrics: species richness, temporal turnover in
composition, spatial differences in composition (beta-diver-
sity), and abundance. Most of the literature we assessed
does not distinguish between native and non-native species
in the calculation of these metrics, focusing instead on species
totals regardless of change in their ranges. Given the impor-
tance of scale-dependence, each section describes and
discusses differences and similarities in patterns found at
different spatial scales. Although spatial scale is a continuous
variable, the same geographical distance is perceived
differently by different organisms. Hence, we use a coarse
classification of studies into local (from a few m to
100 km2), regional (countries to continents) and global
scales (across the entire planet). We recognize there will be
some uncertainty in the classification used, but our chosen
approach aligns with previous definitions of scale [30] and
allows us to categorize studies in a way that balances noise
and meaningful differences.
(a) Species richness
Species richness is possibly the most used biodiversity metric,
but also the most controversial of the results in Vellend et al.
[3] and Dornelas et al. [4]. Both of these papers found little
evidence for a general trend of species richness change
through time at the local scale: some sites showed increases,
some showed decreases, and many showed no change. A
similar pattern has been observed in several recent studies
(figure 2), including on an expanded version of the original
BioTIME [111] dataset with 239 additional studies (with 51
932 individual time series) from across the world [36],
although not without controversy. Similar patterns emerged
from several other synthetic analyses, including herbaceous
plants in grasslands [112], birds [38,39], and insects and
arthropods [40,113] in North America, European plants [41]
and diverse taxa across marine, terrestrial and freshwater
realms from 161 studies from long-term research sites in
Europe [42]. However, not all analyses of species richness
change find trends centred on zero. For example, species rich-
ness increases were found among coastal marine
communities [43], temperate marine organisms [44], moun-
tainous plants [45] and Canadian butterflies [46] and
invertebrate communities [114]. A review of bird diversity
changes found that increases in species richness was the
most commonly observed pattern at local scales [47,115].
Importantly, neither increases, nor the lack of change
observed on average in meta-analyses negate declines in
species richness that are found in some places and/or
among some taxa. For example, deep sea fish assemblages
seem to be losing species locally on the whole [48], and
nearly all of the above synthetic studies include declines in
species richness at some locations or for some taxa. At
local scales, habitat- and taxon-specific studies identify a
diversity of trends in species richness consistent with the
spread of richness trends detected in studies with a global
extent.

At regional scales, patterns of species richness change are
also mixed, but with some evidence towards more frequent
increases in richness [29]. For example, numbers of species
have largely increased in entire regions (e.g. spanning
countries or other geographical units) for plants [49,50,107],
birds [38,47] and mammals [51]. Similarly, increases in rich-
ness were found for North Atlantic fishes [52] and
estuarine fishes in the Atlantic and Gulf of Mexico [53]. Like-
wise, Batt et al. [54] used changes in range sizes of marine
fishes to estimate that species richness increased in eight
out of nine of North American regions they studied. Yet,
regional increases are not universal, with examples of
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Figure 2. Classification of papers performing synthesis or meta-analysis (i.e. across many sites) in each of the 15 cells of all possible combinations of four bio-
diversity metrics (species richness, temporal turnover, spatial beta-diversity and abundance) and spatial scale. Rows denote a classification of the studies according to
the trends reported as per the central diagram: dark green corresponds to positive trends, teal to moderate positive, turquoise to mixed trends centred on no
change, yellow moderate negative and dark orange negative trends. Some studies mentioned in the text did not provide a direct estimate of a trend to be classified,
and hence were not included in this figure. Figure references [3–5,29,31,36–97].
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declines including bumblebees in New Hampshire [55].
Moreover, using plant occurrence data in 5 km-by-5 km
grid cells from across Germany, Eichenberg et al. [56]
observed widespread declines in species richness of vascular
plants in grid cells since 1960. Using a similar approach,
Bowler et al. [116] found increases in dragonfly richness
across Germany from the 1980s to approximately 2010, fol-
lowed by declines. At regional scales, richness change
reversals are consistent with the hypothesis that diverse dri-
vers of change may cause opposite trends in different
locations and at different times.

At the global scale, extinction rates are high and exceed
most rates observed in the fossil record [57]. On the other
hand, there is also a potential acceleration in speciation
rates, notably hybrid speciation in plants [58]. It seems
likely, however, that the current rates of extinction exceed spe-
ciation for most taxonomic groups [117], despite such
estimates being biased towards mammals and birds [118],
with deficient information on temporal trends of global
extinction and speciation rates for other taxa. At the global
scale, despite information gaps, most studies report higher
extinction rates in recent decades.

Despite being perhaps the simplest, most intuitive metric
of biodiversity [119], species richness is highly sensitive to
sampling effort. Consequently, meaningful comparisons can
only be made when sampling effort is controlled for through
rarefaction, [120], extrapolation or interpolation [121]. Impor-
tantly, even with standardized sampling effort, species
richness is insensitive to some types of biodiversity change,
including small magnitude changes (e.g. [122] in this issue).
Hence, a robust approach to detecting biodiversity change
should control for sampling effort and also avoid considering
species richness in isolation.
An important motivation for quantifying change in biodi-
versity is to identify consequences of drivers of change (see
Gonzalez et al. [123] in this issue for a conceptual framework
to use in this context). Initial attempts to explain the range of
trends observed in local species richness found that relatively
little variation was accounted for by covariates. These
included statistical covariates, such as the starting and
ending dates, or length of the time series, as well as study-
level factors such as taxonomic group, climatic region or
realm (marine versus terrestrial; [4]). In Vellend et al. [3],
even the original study authors’ assessments of underlying
driver variables did not account for much of the variation
between studies, nor did plot area, temporal duration, or
the geographical location of the studies. More recent analyses
have explicitly analysed the role of potential underlying dri-
vers of biodiversity change. For example, Suggitt et al. [59]
found that richness increases in the data behind Vellend
et al. [3] were associated with rapid climate change in rela-
tively cool parts of the world, and Antao et al. [44] found
that increases of species richness tended to be associated
with warming in the temperate marine realm. Additionally,
Pilotto et al. [42] found that increases in temperature and ‘nat-
uralness’ tended to be associated with positive trends in
Europe. Likewise, Daskalova et al. [31] showed in regions
that had undergone more intense forest loss experienced
greater decreases in species richness. Collectively, these
studies point to complex and nuanced processes affecting
species richness trends in often counterintuitive ways. Conse-
quently, a picture begins to emerge that helps to resolve the
discrepant trends found at different locations and different
scales. However, there is still substantial variation in trends
that is not readily predicted by specific drivers. Crucially,
multiple drivers of change are affecting each location on the
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planet, often in different combinations [124]. These drivers
can have opposing effects on species richness trends [125],
and different combinations of drivers may be associated
with different temporal lags, making the attribution of
richness change to drivers difficult.
publishing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220199
(b) Temporal turnover in composition
Temporal turnover (sometimes called temporal beta-diver-
sity) [126] measures the extent of compositional change in
assemblages through time, and describes a type of biodiver-
sity change that is ubiquitous. It takes into account
colonization (and/or origination) and extirpation (and/or
extinction), and may additionally consider changes in the
relative abundances of species. In contrast to richness, turn-
over metrics keep track of whether the identities of species
change through time. As all assemblages undergo temporal
turnover, the composition may tend to become more dissim-
ilar from an earlier state as time goes on [127]. Hence, it is
important to evaluate rates of change in turnover time
series, expressed as change relative to the start of the time
series (e.g. as temporal decay in similarity), rather than just
comparing composition between two time points [128].

While temporal turnover has received less attention in the
literature than temporal alpha (local) or gamma (global) diver-
sity [129], it has become increasingly clear that changes in local
assemblages’ composition is one of the strongest signals of bio-
diversity change in theAnthropocene (figure 2). The first global
assessment of the prevalence of these patterns [4] reported a
clear signal of cumulative change in composition and elevated
rates of turnover (relative to null model predictions), but this
finding received less attention than the patterns found for
species richness, despite the importance of species composition
for the structure and functioning of assemblages and ecosys-
tems. Subsequent work including Blowes et al. [36], using
thousands of time series, and controlling for variation in spatial
extent between studies, confirmed high rates of temporal turn-
over within local assemblages, that were generally higher in
marine systems compared to terrestrial ones [36]. Increasingly
high levels of turnover were also documented by a growing
number of studies, including in plants [60,112], birds [47] and
multiple taxa in Europe [42]. In some groups, like fishes [130]
and ants [131], turnover leads to novel communities. Impor-
tantly, there is growing evidence the rates of local extirpation
and colonization are accelerating [132]. As with richness
changes, these studies reveal considerable local variation,
with some communities showing limited compositional
change and others showing major changes in species identities
and relative abundances (e.g. [133–135]).

Although local trends in compositional change can
influence turnover at regional and global scales, our under-
standing of rates of turnover at these larger scales is
sparser. Because local temporal trends are spatially hetero-
geneous (e.g. [133–135]) and influenced by a number of
drivers [136], it is difficult to predict how local compositional
change scales up. For example, a study of ground beetles in
Germany found evidence that local scale change did not
lead to regional scale compositional and functional change
[137]. Importantly, temporal turnover is a necessary but
not sufficient condition for changes in spatial beta-diversity,
as either biotic homogenization or differentiation could
emerge at larger scales (see further discussion in the next sec-
tion). At the global level, temporal turnover is probably
increasing because of elevated extinction and speciation
rates (see §3a).

There is considerable interest in the processes shaping
temporal turnover across all scales. Targeted studies have
found evidence that rank shifts (e.g. [138], dominance e.g.
[139] and rarity e.g. [140]) contribute to compositional
change, but that no single pattern prevails across all systems.
Importantly, turnover is expected from natural colonization/
extinction dynamics and ecological drift in the absence of
anthropogenic drivers, hence it is important to know if turn-
over exceeds null expectations. What should or should not be
included in null models that generate such expectations is in
itself a topic that deserves more attention. Recent analyses
showed that a small fraction of species in an assemblage
contribute disproportionately to turnover [141]. Temporal
turnover can be higher for non-native species than native
ones [142], but the patterns are complex. In fact, turnover
rates can fluctuate through time in sync with multiple
environmental factors, as observed in Finnish lake plants
[143] and North American desert rodents [140]. Anthropo-
genic activities often serve as catalysts for change, leading
to increased temporal turnover, for example in the context
of forest conversion to anthropogenic ecosystems [31], or fol-
lowing human colonization of oceanic islands [61]. There is
scope for further studies of what variables drive temporal
turnover across spatial scales.
(c) Spatial beta-diversity
Spatial beta-diversity quantifies differences in species compo-
sition across sites [144] or scales [145]. Here, we focus on two
types of spatial beta-diversity and how they have changed
through time: beta-diversity among localities within a
region (local scale beta-diversity), and beta-diversity among
regions within continents or over the entire globe (regional
scale beta-diversity). Defined this way, there is no such
thing as global beta-diversity (we do not have several planets
to compare), while studies assessing beta-diversity of local
communities at the global extent are rare. As mentioned at
the start of §3, the classification into spatial scales is coarse,
and based on our assessment of how the grain of sampling
relates to organismal perception of spatial scale (i.e. a combi-
nation of dispersal potential and body size). Declines in
spatial beta-diversity over time is often referred to as biotic
homogenization, while increases in spatial beta-diversity
over time is often referred to as differentiation [136].
Here, we assess the prevalence of homogenization and
differentiation through time at local and regional scales.

At local scales, the replacement of many local endemics
and specialists with a small number of wide-ranging general-
ist species is hypothesized to homogenize assemblages [146]
for example in urban landscapes in comparison to more natu-
ral vegetation [147]. There are many studies assessing this
pattern in space-for-time approach (reviewed in [148])
which we will not further discuss in this section. While
there is some evidence for large ranged species replacing
small-ranged ones (e.g. [41]) this does not provide direct evi-
dence of homogenization. Among studies of how beta-
diversity has changed through time, there are consistent
signs of homogenization for marine fishes in Scotland [62],
freshwater macroinvertebrates in New Zealand [63], Cana-
dian butterflies [46] and birds [47]. Yet, not all studies show
homogenization. For instance, marine fishes in the North
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Sea have seen increasing taxonomic differentiation [64]. In
fact, the largest meta-analysis of trends in spatial beta-diver-
sity to date reveals a mix of both patterns, but a central
tendency leaning slightly more towards homogenization
than differentiation that was nevertheless not statistically dis-
tinguishable from no change [149].

At the regional scale, there are empirical examples across
the whole range from differentiation to homogenization. For
example, there was no evidence of change in beta-diversity
among lake diatom assemblages of North America [65]. Com-
paring plant composition in historical and modern times
reveals signs of homogenization among Danish vegetation
assemblages [50], across Europe [49], North America [150]
and globally [151]. On oceanic islands, which are strongly
affected by dispersal limitation, the tendency is for homogen-
ization driven by human introductions, although the pace and
trajectory vary substantially across taxa [66]. Similarly, an
analysis of biogeographic boundaries of terrestrial gastropods
found evidence for regional homogenization as human intro-
ductions overcome dispersal barriers [67]. Yet, the balance
between homogenization and differentiation becomes more
obvious when comparing different regions across continents
or the globe, where patterns in beta-diversity are tightly
linked to ecosystem changes and landscape structure.
Humans have modified the planet extensively, creating a
patchwork of anthromes superimposed on existing biomes
[99], which can generate scale-dependent ecosystem richness
and diversity patterns [68]. The fragmentation (e.g. of ‘orig-
inal’) and intermingling (e.g. with human-modified) of
ecosystems is likely to impact regional beta-diversity in com-
plex ways [152]. Considering biotic similarities of ecosystems
along with changes in land use suggests there has been an
increase of regional beta-diversity in the past millennium,
although at a slower pace in the past century [68]. Indeed,
using Whittaker’s definition of beta-diversity (the ratio of
regional : local richness), and following from §3a, we would
expect a mixture of increases and decreases in beta-diversity
to arise from the trends in local and regional species richness.
In summary, these studies collectively include temporal shifts
in spatial beta-diversity ranging from homogenization to
differentiation, for different locations, regions and taxa.

The processes involved in mediating changes in beta-diver-
sity are largely linked to change in patterns of connectivity and
of environmental heterogeneity [153]. Human activities have
been linked to homogenization patterns, through widespread
introductions of species [154–156]. For example, widespread
spatial homogenization of plant communities has been docu-
mented at the regional scale, primarily explained by non-
native species naturalizations [154]. Conversion of natural
and semi-natural ecosystems to more anthropogenic ecosys-
tems has probably led to reduced connectivity and increased
habitat heterogeneity of the remnant (semi)natural habitats
(in contrast to high levels of soil and propagule transport
within some human-modified ecosystems); we thus expect
increased differentiation between intact and modified land-
scapes. Importantly, patterns of change are likely to differ
considerably depending on whether beta-diversity is
estimated within or across habitat types.
(d) Abundance and biomass
Abundance and biomass can also be sensitive to human
impacts, and can strongly influence responses of biodiversity
to global change (e.g. via sampling effects associated with the
fact that observations are always incomplete samples of rea-
lity [120]). These measures differ, however, from the alpha
and beta-diversity metrics discussed in the previous sections
because density (number of individuals or biomass per area)
can be effectively averaged across spatial subunits. That is,
the change in density for a larger unit is mathematically the
average (weighted by the initial value) of the changes in
abundance density of each subunit. Thus, although processes
controlling numerical abundance and biomass (two metrics
of organismal abundance) probably do change at different
scales, the patterns themselves should be mostly equivalent.
Accordingly, we do not make a strong distinction of the
spatial scale of analysis in this section, and instead organize
the discussion by taxon. Analysis of long-term monitoring
data of assemblages across diverse taxa globally reveal het-
erogeneity in trends in total community abundance, with
the mean trend not differing from zero [4]. Other taxonomi-
cally broad surveys of communities have mostly echoed
this result [31,42,69].

Results do vary among taxa, however, with more extreme
rates of change commonly associated with relatively narrow
taxonomic or functional groups. For example, large predatory
marine fishes [157] and shark and ray [70] abundances have
declined precipitously (80% and 71%, respectively). These
studies focus specifically on taxa directly impacted by indus-
trial fishing, while other studies looking at marine fishes
across entire assemblages do not show these strong declines
[4,44,53,132]. Indeed, Myers & Worm [157] explicitly note
that compensatory responses of smaller fish species have
been observed even though they were not part of their analy-
sis. Per cent cover (a metric of biomass) of living coral on reefs
has also shown large declines globally [71], while diatom
abundances show spatially variable trends related to climate,
without a strong overall general trend [158,159].

Terrestrial plants are estimated to have had their total
global biomass reduced, as much of primary productivity is
appropriated by humans, but trends are also spatially and
temporally variable. Hansen et al. [72] found 2.3 million
km2 of loss versus 0.8 million km2 of gain in forest cover glob-
ally between 2000 and 2012, with considerable spatial
variation. By contrast, a more recent study looking at all veg-
etation types spanning 1982–2016 found that loss of tree
cover in the tropics was outweighed by gains in temperate
regions, yielding a net gain in tree cover of 2.24 million
km2, albeit with significant regional variation in both patterns
and drivers [73]. Surveys of Arctic tundra vegetation found
significant heterogeneity in abundance trends, with a
majority of sites and groups showing no significant change
overall, although five of six functional groups, particularly
shrubs, grasses and sedges, showed greater increases in
numerical abundance or cover than declines [74,75,160]. In
the marine realm, declines outnumber and outpace increases
among seagrasses [161] and kelp [162].

Trends in insect abundances have been of intense interest
in recent years. A study on two forest plots in Puerto Rico
[163], and two studies from multiple sampling sites and
regions in Germany [164,165] reported steep declines, result-
ing in newspaper headlines about an ‘Insect Apocalypse’.
Aspects of these studies were criticized, including analysing
short time series without accounting for year effects and the
starting year of those time series [165–167]. Other more
recent studies include a study of butterflies in Europe [76]
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that found that abundance declined by 50% in the UK and in
the Netherlands, with 20 species declining and nine increas-
ing in the former, and 25 species declining and 16
increasing in the latter. Similarly, in Ohio (USA) a 33%
reduction in butterfly abundances was reported over 21
years [168]. Other studies have found less dramatic results.
For example, a large meta-analysis of long-term sites in the
USA [40] found no overall trend in insect abundance or bio-
mass (a result that held up in reanalyses [113] after criticism
[169,170]), while Daskalova et al. [171] found similar results
in a synthetic analyses of invertebrate abundances across
datasets. In a meta-analysis of time-series across the world,
van Klink et al. [77] found distinct differences in insect abun-
dance trends among realms, with terrestrial insects declining
in abundance by 9% per decade, while freshwater insects
were increasing by 11% per decade.

Studies of changes in populations of terrestrial vertebrates
(typically monitored as populations rather than assemblages)
have also been contentious. The Living Planet Index (LPI)
monitors vertebrate populations across the world, with its
most recent 2022 report showing a 69% average decline in
the geometric mean of population abundances since 1970
[78]. Other studies using the Living Planet database, which
is behind the LPI, have found more complex and nuanced
patterns. For instance, Leung et al. [69] found that birds, rep-
tiles and mammals were increasing in abundance, freshwater
fishes showed no net change, and only amphibians were
declining. Daskalova [172] found that 18% of vertebrate
populations increased, 15% declined, and 67% showed no
net change. How can these studies, using the same database,
come to such different conclusions to those published in the
LPI reports? A key difference is the LPI goal of averaging
across all species using a geometric average and differentially
weighting data series in an attempt to correct for sampling
bias. Random fluctuations were found to lead to a declining
LPI even when overall population trends were stable [173].
By contrast, Leung et al. [69] found a balance of increases
and declines, once time series with fewer than six time
points were excluded to improve reliability of trend esti-
mates. Similarly, Daskalova et al. [172] also found a balance
of increases and declines using arithmetic averages of
slopes of rates of change over time. Leung et al. [37] further
showed that the geometric average strongly emphasizes
extreme changes and found that 1% of the populations
showed extreme declines, 0.4% showed extreme increases
and the remaining 98.6% of the populations showed no
mean trend, although some regions and taxa were increasing
while others were decreasing. Further, most of the extreme
declines were also the shortest time series. Commentary on
this analysis pointed out that there are more extreme declines
than extreme increases [174], that many declines occurred
prior to the 1970 baseline used by this database [175], and
that the Living Planet database (and the LPI) cannot estimate
change in absolute abundances [176], but is nevertheless
useful for analyses of trends (i.e. are populations generally
growing or declining, [177]). Other analyses that have
looked at trends in vertebrate abundances with different
data sources also found no overall directional trends in
total abundance [4,42,132].

Among the most frequently monitored populations are
birds in Europe and North America, where parallel results
of a net decline in total abundance of 20% and 29% have
been reported, respectively [39,79,80]. In addition, all three
papers report that rare species are increasing and common
species are declining. Because abundances are highly
unevenly distributed among species (with 10% or fewer of
the species often accounting for 50% or more of the abun-
dance or biomass [178]), total abundance and biomass
trends essentially track what is happening to the most
common species. For instance, the 10 species declining the
most in North America are among the most abundant [80].
Assessing human impacts on vertebrates over time scales of
millennia rather than decades, Bar-on et al. [179] estimated
that the current biomass of humans and our livestock sub-
stantially outweigh wild mammal biomass today and in
pre-human times. Similarly, domesticated poultry outweigh
wild birds, while marine mammals have been reduced
fivefold and fishes by approximately 12%.

In summary, we are not close to a globally consistent
answer to the question about total change in abundance or
biomass for large taxonomic groups like insects, birds or
fishes. Many of the terrestrial datasets mentioned above prob-
ably do not sample the regions with dramatic declines (e.g.
intensively built or agricultural areas), which would limit
their use to estimate global averages, but would instead
make them representative of biodiversity trends for the
very large areas outside of urban and high-intensity agricul-
tural areas (figure 1b). Nonetheless, the literature shows us
that for many taxa at many locations, we observe high varia-
bility centred around mean trends in biomass or abundance
that are not drastically different from zero. There are more
studies reporting declines than increases, and declining
groups are usually either targeted for substantial harvesting,
like trees and large predatory fishes, or are known to be sen-
sitive to major global change drivers (e.g. climate change for
amphibians and corals, pesticides for some birds and insects).
There are also important cases where abundances seem to be
increasing, possibly as a result of improved conditions, such
as freshwater insects in some parts of Europe and North
America [77]. Careful thinking about spatial, temporal, and
taxonomic averaging (see next section), as well as averaging
across functional groups (cf. [39,81]) will improve our under-
standing of abundance and biomass trends in the
Anthropocene.
4. Steps going forward
Controversies are useful in stimulating research. However, it
is useful to determine when they have been resolved, and
to identify what knowledge gaps remain. Importantly, an
integral component of resolving controversies is identifying
where differences of opinion hinge on methodological
approaches [180]. It is clear that different estimates of tem-
poral change in biodiversity include differences that are
both methodological and ‘real’. For example, in estimates of
change in abundance, some studies focus on total abundance
or biomass estimates for the entire assemblage (e.g. [77]),
others represent agglomerated measures of population
changes (e.g. [37]), while yet others represent averages
across species within specified regions (e.g. LPI). Within the
studies that focus on averages, the choice of arithmetic or geo-
metric means changes the overall pattern. Geometric means
of growth rates (e.g. LPI) have been shown to exaggerate
extreme (and often the shortest) time series. Likewise, vote
counting (per cent of species increasing and decreasing) can
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give very different results than estimating trends in total
abundance or biomass because the most abundant species
contribute more strongly to the latter and tend to dominate
the overall pattern. Thus, it is important to choose methods
of averaging across taxa that are appropriate for the goals
and questions and to avoid direct comparisons among
disparate methods.

Estimating trends that are representative of the entire
planet, or any large region of the planet, will usually require
combining multiple sources of data. In doing so, it is critical
to consider the statistical power of contributing datasets, and
to apply analytical approaches that carefully consider the
underlying uncertainty and allow it to propagate appropri-
ately. In this context appropriate meta-analytical methods
should be used, either through the independent calculation
of metrics of interest from sampling effort standardized raw
data (e.g. [4,36]), or through the use of two-stage models
(e.g. [44]). In addition, most studies also include some kind
of spatial averaging. However, as a hypothetical example, a
50% decline overall could result from a 50% decline in each
sub-region, a 100% decline in half the sub-regions and a 0%
decline in the other half, or even a 100% decline in two
thirds of the sub-regions and a 200% increase in one third of
the sub-regions. Differentiating which of these scenarios are
occurring is important because their implications for conserva-
tion and ecosystem function are quite different. Nevertheless,
individual sites, entire regions and taxa show genuinely differ-
ent and potentially opposing trends in species richness, spatial
beta-diversity, abundance and/or biomass.

As data and studies have accumulated, they have revealed
there is extensive variability in biodiversity trends, and that
we see gains and losses of species and individuals that result
in a balance of net decreases in some situations, and increases
in others (figure 2). Recognizing this variation allows us to
seek the underlying explanations for different patterns of biodi-
versity change. For instance, the rate and direction of changes
vary spatially and between realms [36,42], as well as with the
magnitude of different anthropogenic drivers, such as climate
and land-use change [31,59,82,181]. However, much remains
to be understood, as most of the variation in biodiversity
trends still remains unexplained, with the added challenge
that drivers of change co-occur in different combinations
[124,182], making attribution a difficult task.

Many studies confirm that there is a consistent signal of
compositional change over time. While some turnover is to
be expected even in the absence of strong environmental
change [127], there are signs that turnover is accelerating
[132]. Importantly, it is likely that composition changes are
associated with functional and phylogenetic changes, which
do not necessarily follow taxonomic diversity trends. For
example, North Sea fish communities diverged in taxonomic
composition over time but converged in species traits [64].
For birds, taxonomic, functional and phylogenetic diversity
increased over time in North America [39,183] while Leroy
et al. [47] reported a balance of increases and declines in func-
tional diversity at local scales, but increasing trends at
a regional scale, and a decline globally. Climate change and
fishing pressure led to opposing effects on the functional
diversity of commercial fish communities in the China Seas
[184]. Local, but not regional, phylogenetic diversity declined
over a 19-year time series of grassland vegetation in California
[185], while plant communities have become homogenized
both taxonomically and phylogenetically in Europe [49] and
across the globe [151]. Thus, it remains challenging to accu-
rately predict the winners and losers of the ongoing
environmental changes.

Important gaps remain in our knowledge of other facets of
biodiversity, like genetic diversity, which remain largely unex-
plored, particularly at larger scales [186]. One of the few broad
scope analyses revealed similar patterns to species richness,
with generally weak or non-significant (and scale-dependent)
effects of land use and human density on the intraspecific gen-
etic diversity of greater than 17 000 species of birds, fishes,
insects and mammals [187]. Other studies, however, have
estimated losses of varying magnitude. For instance, a
approximately 6% loss in genetic diversity since the industrial
revolution was estimated for 91 species, being most severe for
island species (average decline of 28%) [188], while a global
loss of greater than 10% of genetic diversity was recently
suggested from extrapolations of a subset of species respond-
ing to habitat loss [189]. Conversely, an increase in genetic
variation following invasion was detected in both exotic and
native populations for several species [190].

The evidence for a signal of biodiversity change, but not
necessarily widespread loss for most measures at most spatial
scales, highlights the difference between the quantity of biodi-
versity in a given place, and the value that particular
individuals and societies assign to particular species and par-
ticular ecosystem configurations. More biodiversity, or a
particular type of species or community, may or may not be
desirable given a particular set of values. For example, in the
management of global rangelands for improved grazing,
removal of woody species can have trade-offs including detri-
mental impacts on biodiversity [191]. However, it is important
to note that stakeholders’ values are not typically determined
by scientific findings, but rather by economic and societal fac-
tors related to livelihoods or highly personal moral, ethical,
philosophical and political judgements. There may be impor-
tant gaps between what different groups of people value, as
well as between what most people value and what maximizes
ecosystem function and resilience [192].

Despite the accumulation of data and proliferation of
studies, important blind spots about how biodiversity is chan-
ging through space and time remain. The data available to
measure change in biodiversity is consistently biased spatially,
taxonomically, and with regard to anthropogenic drivers of
change [193,194]. Given the variation uncovered by spatial
analysis of biodiversity time series (e.g. [36,42]), as well as
across taxa in the same locations (e.g. [133,195]) it is important
to note that all conclusions to date are contingent on the avail-
ability of data in time, space and across taxa. We emphasize
the need for improved representation of under-sampled
regions and taxonomic groups. At the same time, large
volumes of data are available today and we contend that
these are sufficient to draw firm conclusions in relation to
locations and taxa for which data are available. As we seek
to expand the data to quantify these patterns, we should
strive to improve representation, rather than expand to collect
more of the same data. The largest ecosystem on the planet, the
deep sea, remains grossly under-represented in biodiversity
databases, and polar and tropical regions are also poorly cov-
ered. The most disturbed and the most pristine locations are
under-represented from biodiversity databases on change
through time, at a global scale [194]. Moreover, combining
datasets collected with different methods continues to create
important challenges to detect and attribute biodiversity
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change. Ideally, we would be implementing stratified random
sampling of biodiversity using standardized methods across
the entire planet [196,197]. Importantly, even if we start
today, it will take a substantial period for time series to
accumulate. Like the saying about the best time to plant a
tree, the best time to begin stratified monitoring has already
passed. The second best time to start is now.
ing.org/journal/rstb
Phil.Trans.R.Soc.B

378:20220199
5. Conclusion
There is substantial variability in biodiversity trends across
metrics, scales, taxa and regions. A simplistic narrative of ubi-
quitous biodiversity loss does not reflect the current knowledge
of empirical patterns. Recognizing this variability is imperative.
Across space, time and taxa, increases and declines in a single
metric of biodiversity can occur simultaneously, and different
components of biodiversity may show decoupled trends.
Importantly, this variability implies that our knowledge gaps
matter because biodiversity monitoring is biased and there
are many blind spots. Although we argue for the importance
of recognizing nuance in biodiversity patterns, it is easy to
fall into the trap of ubiquitous context dependence, preventing
us from identifying general patterns. Instead, we argue for
taking advantage of the variability in trends to help us deter-
mine what is happening in places and at times where
biodiversity is changing towards outcomes aligned with our
values, and where it is not. The next stage of biodiversity syn-
thesis, that has already begun [e.g. [31,44]), will need to bring
together different perspectives and quantitative analyses to
improve our understanding of not only the rates and magni-
tudes of biodiversity change, but to quantitatively attribute
those changes to drivers across the Anthropocene across
scales. Identifying the types of human actions that promote
preferred biodiversity trajectories will equip us to make
informed decisions in biodiversity policy.
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