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Abstract

Because biodiversity is multidimensional and scale-dependent, it is challenging to estimate its
change. However, it is unclear (1) how much scale-dependence matters for empirical studies, and
(2) if it does matter, how exactly we should quantify biodiversity change. To address the first
question, we analysed studies with comparisons among multiple assemblages, and found that rar-
efaction curves frequently crossed, implying reversals in the ranking of species richness across spa-
tial scales. Moreover, the most frequently measured aspect of diversity – species richness – was
poorly correlated with other measures of diversity. Second, we collated studies that included spa-
tial scale in their estimates of biodiversity change in response to ecological drivers and found fre-
quent and strong scale-dependence, including nearly 10% of studies which showed that
biodiversity changes switched directions across scales. Having established the complexity of empir-
ical biodiversity comparisons, we describe a synthesis of methods based on rarefaction curves that
allow more explicit analyses of spatial and sampling effects on biodiversity comparisons. We use a
case study of nutrient additions in experimental ponds to illustrate how this multi-dimensional
and multi-scale perspective informs the responses of biodiversity to ecological drivers.
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INTRODUCTION

Biodiversity is multidimensional and scale-dependent. It is
multi-dimensional, because it is determined by a combination
of the total numbers of species in a given area and the total
and relative abundances of those species in that area. And it
is scale-dependent, because all measures of diversity necessar-
ily increase nonlinearly with increasing sampling effort and
spatial scale. However, the nature of this scaling depends on
the total numbers of species, the total and relative abundances
of individuals, as well as their spatial distribution. This makes
comparisons of biodiversity from place to place (and time to
time) more challenging than comparisons of most other vari-
ables in ecology (e.g. McGill 2011a).
Understanding how biodiversity changes in the face of natu-

ral and anthropogenic drivers can be greatly enhanced by

taking a scale-explicit and multi-dimensional perspective on
biodiversity and its change. Of course, ecologists have long
recognised the complexity in making comparisons of biodiver-
sity in response to natural and anthropogenic drivers and con-
tinuously sought better solutions to this problem (e.g. Preston
1960; MacArthur & MacArthur 1961; Hurlbert 1971; Hill
1973; Lande 1996; Gotelli & Colwell 2001; Jost 2006; Magur-
ran & McGill 2011; Chao & Jost 2012; Chase & Knight 2013).
Nevertheless, there is little consensus or consistency as to
which (if any) solutions are best. And as a likely result, the
vast majority of empirical studies ignore these complexities
and typically measure and compare only a single variable (usu-
ally species richness), measured at a single spatial scale (usually
determined by the grain size and extent of the sampling).
To illuminate the neglect of spatial scale and multi-dimen-

sionality in biodiversity studies, we evaluated papers published
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from 2012 to 2017 in Ecology Letters that compared (taxo-
nomic) diversity (but not composition). Of these, 80% (44/55)
only reported one measure of diversity (90% of those were
species richness), and 75% (41/55) compared diversity at only
one spatial scale; just three exemplary studies (Solar et al.
2015; Livne-Luzon et al. 2017; Martinson et al. 2017), mea-
sured multiple dimensions of diversity at multiple scales,
which we advocate to more fully understand biodiversity
change.
Simply estimating a difference (i.e. effect size) of any mea-

sure of diversity at a single scale and then subjecting that dif-
ference to standard statistical analyses does not capture the
fact that the magnitude, and even direction, of biodiversity
change critically depends on which measure, and at which
spatial scale, the data were collected (e.g. Scheiner et al.
2000; Whittaker et al. 2001; Chase & Leibold 2002; Rahbek
2005; Dumbrell et al. 2008; Sandel & Smith 2009; Keil et al.
2011). This is not just a theoretical issue, but is a concrete
problem that can affect biodiversity conservation and man-
agement. For example, Hill & Hamer (2004) reviewed studies
of the effects of logging on tropical forest bird diversity and
found that bird diversity tended to decrease with logging
when the scale in which diversity was measured was relatively
small (i.e. < 25 ha), but increase with logging in studies in
which diversity was measured at larger spatial scales. In an
analysis and review of the effects of logging on butterfly
diversity, Hamer & Hill (2000) likewise illustrated scale-
dependent effects of logging, but in a different direction (i.e.
minor effects of logging on diversity at small scales, but lar-
ger negative effects at larger scales).
Does it matter that biodiversity is multidimensional, where

change in an estimate of species richness at a given scale
might differentially reflect changes in the total and relative
abundances of individuals in a community? Many have
argued that different measures of biodiversity (e.g. evenness,
richness) are highly correlated and thus perhaps redundant. If
so, one measure of diversity and its change would likely suf-
fice. Likewise, does it matter that these biodiversity changes
can be scale-dependent? While there are certainly many case
studies where scale-dependence has been observed, is this
common? How often do measured effect sizes vary in magni-
tude and/or direction such that conclusions about biodiversity
change would be altered?
Here, we first review the multidimensional concept of biodi-

versity and its scaling to establish general hypotheses about
the scale-dependent nature of biodiversity measures and their
comparisons. We collated datasets where species assemblages
from multiple sites were compared within a study and asked
whether measures of biodiversity were correlated. Next, we
collated studies in which biodiversity changes were measured
at more than one spatial scale, so that we could estimate how
frequent scale-dependence occurred in the magnitude and
direction of effect sizes. Finally, after showing that biodiver-
sity changes are indeed typically multivariate and scale-depen-
dent, we describe a recipe that synthesises a number of
measures of biodiversity to more fully evaluate how biodiver-
sity changes, and we illustrate our approach with a case study
from a previously published experiment on aquatic meso-
cosms.

THE MULTIDIMENSIONAL NATURE OF

BIODIVERSITY AND ITS SCALING

Biodiversity is a summary variable that is influenced by the
abundances and distributions of populations of multiple spe-
cies. Three factors in particular combine to influence diversity
measures at any given sample or scale (e.g. He & Legendre
2002; McGlinn & Palmer 2009; McGill 2011a; Chase & Knight
2013): (1) the total numbers of individuals (N) in a community;
(2) the species abundance distribution (SAD), which includes
both the total numbers of species in the community (S) and
their relative abundances; (3) the spatial distributions of indi-
viduals, which influences patterns of intraspecific aggregation
or clumping. Each of these components can be independently
and interactively influenced by ecological drivers, leading to
multidimensional and scale-dependent biodiversity change. We
recognise that a critical component of biodiversity change is in
compositional shifts, which uses a different set of metrics to
detect changes (e.g. Baselga 2010; Dornelas et al. 2014; Legen-
dre 2014; Hillebrand et al. 2018). But here we only focus on
the quantifications of biodiversity within and across communi-
ties, which presents more than enough challenge in itself.
When comparing communities, any differences in the N, the

SAD and/or aggregation will influence how measurements
and comparisons of biodiversity change with sampling scale
or effort. Figure 1 illustrates one way to depict this scaling –
via individual-based rarefaction (IBR) curves – and shows
two qualitatively distinct ways in which it can differ. Differ-
ences in IBR curves are determined only by differences in the
SAD (both the total S and their relative abundance) (e.g.
Gotelli & Colwell 2001; Cayuela et al. 2015).
In Fig. 1a, three communities (labelled A, B, and C) differ

in a straightforward way; both species richness and the rela-
tive abundances of the three communities are ranked
A > B > C. Thus, if we were to compare species richness or
other commonly measured estimates of diversity (e.g. Shan-
non, Simpson), they would rank the same. In such a case, it
would not be necessary to worry much about the multidimen-
sionality of diversity estimates (i.e. because different dimen-
sions are correlated). However, even when the rankings of S
and other diversity measures are consistent, there can still be
scale-dependence when the SAD changes among communities
(e.g. Gotelli & Colwell 2001; Cao et al. 2007; Chase & Knight
2013; Cayuela et al. 2015). Nevertheless, this scale-dependence
is moderate and would be predictable, consistently leading to
larger differences between communities as scale increases (i.e.
rarefaction curves diverge).
In Fig. 1b, three communities (labelled A, B, and C) differ

in a more complex way. Community A is dominated by a few
very common species and has several rarer species (i.e. is less
even), and thus has a shallower slope near its base than Com-
munity B, but higher total S. That is, the difference between
the communities flip-flop; at small scales, B is richer than A,
but at large scales, A is richer than B. The comparison
between Communities B and C is somewhat similar; they have
the same total S, but different levels of evenness (and diver-
sity), again decoupling the different measures of diversity.
Finally, Communities A and C differ in both S and diversity
measures in the same direction.
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These represent two extreme scenarios for diversity compar-
isons between communities. In Fig. 1a, diversity measures are
largely correlated and scale-dependence is unidirectional, sug-
gesting that we may not need to worry much about which
measures of diversity we use for comparisons, and at which
scales. Alternatively, in Fig. 1b, diversity measures are decou-
pled and scale dependence is strong, suggesting that more
complex measurements and comparisons of biodiversity will
be necessary. Furthermore, the curves in Fig. 1 only include
differences in the SAD between communities, whereas varia-
tion also in N and aggregation will lead to even more complex
species accumulation curves, which could further decouple
diversity measures and create more, and more complex, forms
of scale-dependence (see also Chase & Knight 2013; Blowes
et al. 2017; McGlinn et al. 2018).
Next, we empirically evaluate these possibilities, with the

extremes being: (1) biodiversity change between communities
is relatively ‘well behaved’, where different measures of biodi-
versity are largely correlated and scale-dependence is moder-
ate and unidirectional (Fig. 1a), or (2) biodiversity change is
more complicated where different measures are poorly corre-
lated and scale-dependence is strong and multi-directional
(Fig. 1b). As discussed above, few exemplary data exist where
multiple measures and multiple scales of biodiversity change
are collected and compared. And so we used two separate
meta-analyses described in the following sections, one to com-
pare correlations (or lack thereof) among diversity measures,
and another containing data measured at multiple scales to
evaluate the degree and direction of scale-dependence in biodi-
versity responses to ecological drivers.

EMPIRICAL EVIDENCE THAT BIODIVERSITY CHANGE

IS OFTEN MULTIDIMENSIONAL

To determine which of the caricatures in Fig. 1 is more
indicative of biodiversity change among communities, we
directly compared SADs and the resulting rarefaction curves
from 37 datasets in which two or more local communities
were compared (data and references listed in Appendix S1,
taken from a larger assemblage of datasets amassed by
McGill 2011b). We used these studies to evaluate (1) how
often rarefaction curves cross, suggesting that sampling scale
can critically influence conclusions about the magnitude and
direction of biodiversity change, and (2) how measures of
diversity (S, SPIE) and numbers of individuals (N) co-vary
among communities. Because there was no spatial information
available in these datasets, we were only able to compare rar-
efaction curves, eliminating potential influences of differences
in spatial aggregation, which could have further complicated
their relationships.
Example datasets include bird surveys along standardised

routes in North America (i.e. the Breeding Bird Survey; Par-
dieck et al. 2017), benthic marine nematodes collected from
cores in relation to pollution (Lambshead 1986), arthropods
associated with different macrophyte species in streams (Har-
rod 1964), and trees from different sections of the Barro Col-
orado Island permanent forest plot (Condit et al. 2012). Most
datasets compared 2–20 communities; for datasets with > 20
communities (e.g. the North American breeding birds), we
randomly selected 20 sites so that larger datasets did not
numerically dominate the results.
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Figure 1 (a) Individual-based rarefaction (IBR) curves of three hypothetical communities (labelled A, B, C) where ranked differences between communities

are consistent across scales. (b) IBR curves of three hypothetical communities (labelled A, B, C) where rankings between communities switch because of

differences in the total numbers of species, and their relative abundances. Dotted vertical lines illustrate sampling scales where rankings switch. These

curves were generated using the sim_sad function of the mobsim R package (May et al. 2018).
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First, we evaluated whether the rankings of rarefaction
curves were relatively well-behaved, as in Fig. 1a, or whether
curves were more likely to cross, as in Fig. 1b (see also Lande
et al. 2000; Thompson & Withers 2003). Such crossings indi-
cate not just a change in magnitude, but also a change in
direction of biodiversity change due to sampling and spatial
scale. We compared curves for each pair of communities
within a single dataset (see Fig. 2a for two examples). Across
all datasets, a total of 2203 pairwise comparisons were made,
with 732 pairs of rarefaction curves crossing (33% of all pairs,

with some curves crossing multiple times) (Fig. 2b). Impor-
tantly, the crossing points were not ecologically trivial (e.g.
crossings only at very small N). The average crossing occurred
at 24% of the total abundance in a community and the aver-
age vertical separation on curves that crossed was 6.3 species
(vs. an average of c. 40 species in a community).
Next, we examined the relationships between three measures

often collected and compared among communities. Specifi-
cally, we compared the total N measured in a community, the
number of species (S) from that community, and a measure of
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Figure 2 Representative rarefaction curves, the proportion of curves that crossed, and counts of how often curves crossed. (a) Rarefaction curves for

different local communities within two datasets: marine invertebrates (nematodes) along a gradient from a waste plant outlet (Lambshead 1986), and trees

in a Ugandan rainforest (Eggeling 1947); axes are log-transformed. (b) Counts of how many times pairs of rarefaction curves (from the same community)

crossed; y-axis is on a log-scale.
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diversity that takes relative abundances into account. For
the latter, we used a bias-corrected version of Hurlbert’s
(1971) probability of interspecific encounter;
PIE ¼ N

N�1

� �� 1�PS
i¼1 p

2
i

� �
, where N is the total number of

individuals in the entire community, S is the total number of
species in the community, and pi is the proportion of each
species i. We used PIE because it is a relatively unbiased esti-
mator of evenness, it is intuitive and familiar to ecologists,
and is equivalent to the slope of the rarefaction curve at its
base (between N = 1 and N = 2) (Olszewski 2004). Specifi-
cally, a more even community (higher PIE) accumulates spe-
cies more quickly with increasing N than a less even
community (lower PIE). PIE is equivalent to 1 � Simpson’s
index (also called the Gini–Simpson index) (Jost 2006), but we
prefer the PIE terminology because it has a strong intuitive
interpretation (i.e. the PIE), as well as connection to the IBR
curve. We converted PIE into an effective number of species,
SPIE, so that comparisons with S are more intuitive (e.g. Hill
1973; Jost 2006, 2007); SPIE is equivalent to 1/Simpson’s
index. SPIE is the number of equally abundant species it
would take to yield a given value of PIE (see McGlinn et al.
2018 for justification for why we take the effective number of
species from the bias corrected PIE). In a community in which
all species have identical abundances, SPIE would be equal to
S, but as the community becomes increasingly dominated, S
stays the same, but PIE decreases towards 0 and SPIE

decreases towards 1. Other measures of diversity when

converted to an effective number of species are also poten-
tially informative, such as Shannon’s index (e.g. Jost 2006,
2007; Chao et al. 2014a), but here we focus on S and SPIE

because S is most sensitive to changes in the abundance of
rare species, whereas PIE is more sensitive to changes in the
abundance of common species.
We examined bivariate relationships between S, N and SPIE

using hierarchical linear models with a fixed effect, and mod-
elled variation among studies as a random effect on slopes
and intercepts. S was modelled assuming Poisson error and a
log-link function; N and SPIE entered both models as log-
transformed covariates. All models were fit in R (R Core
Team 2017) using the brms package (B€urkner 2017). To com-
pare variation across vs. between datasets, we quantified the
marginal (fixed effect only) and conditional R2 (fixed + ran-
dom effects; Gelman et al. 2017).
First, we regressed S as a function of N (Fig. 3a). As

expected from sampling, there was an overall increasing rela-
tionship between N and S across all studies. However, the
relationship had low explanatory power (R2 = 0.12). The vari-
ation explained when the relationships were allowed to vary
between studies increased dramatically (R2 increases to 0.91).
While most studies showed a positive relationship between N
and S, slopes and intercepts among studies varied widely, and
more than 30% (12/37) of studies showed that the 95% credi-
ble interval of the study-level slope overlapped zero. Clearly,
much of the relationship between N and S as well as its
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Figure 3 Bivariate relationships between N, SPIE and S for 346 communities across the 37 datasets taken from McGill (2011b) (see Appendix S1). (a) S as a

function of N; (b) S as a function of SPIE. (N vs. SPIE not shown). Black lines depict the relationships across studies (and correspond to R2 fixed); coloured

points and lines show the relationships within studies. All axes are log-scale. Insets are histograms of the study-level slopes, with the solid line representing

the slope across all studies. Gray bars indicate the study-level slope did not differ from zero, blue indicates a significant positive slope, and red indicates a

significant negative slope.
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variation among studies is due to sampling and methodologi-
cal differences. However, the fact that some types of commu-
nities within a study have large differences in N, with little
variation in S, whereas other communities within a study have
smaller N differences, but large S differences indicates that N
and S changes are not completely coupled. For example, there
are many instances where N can dramatically increase or
decrease from one place to another, but if there is a concomi-
tant change in the relative abundances of species, we might
expect little variation in S.
Second, we regressed S as a function of SPIE to determine

whether diversity measures were consistent in their differences
among communities (Fig. 3b). Again, we found a significant,
but weak (R2 = 0.11), relationship between these two mea-
sures. As in our analysis of S and N, the fit of the model was
much higher when we incorporated a random effect to cap-
ture variation in the slope and intercept among studies
(R2 = 0.85). Here, most studies (20/37) showed that the 95%
credible interval of the study-level slope overlapped zero,
though some were positively associated (16/37) and one
showed negative associations.
In sum, our analyses above show that rarefaction curves

often cross and that different measures among communities
are often decoupled (N, S, SPIE). This supports the hypothesis
that multiple measures are often necessary to understand
treatment effects on biodiversity (see also e.g. Stirling & Wil-
sey 2001; Wilsey et al. 2005; Soininen et al. 2012).

EMPIRICAL EVIDENCE THAT BIODIVERSITY CHANGE

IS OFTEN SCALE-DEPENDENT

Explicit consideration of spatial scale has provided some reso-
lution to contradictory results in the literature. For example,
Chase & Leibold (2002) showed that the influence of produc-
tivity on species richness was much stronger at larger spatial
scales than at smaller ones (see also e.g. Whittaker et al. 2001;
Gardezi & Gonzalez 2008; Andrew et al. 2012). Likewise,
Powell et al. (2011, 2013) showed that invasive species can
simultaneously have strong impacts on diversity at small
scales, but much weaker effects at larger scales.
Although such multiple-scale analyses remain uncommon in

the biodiversity literature, there are enough to allow for a syn-
thetic meta-analysis. We identified possible studies using an
ISI Web of Science search with the key words ‘species richness
or diversity or biodiversity’ AND ‘scale or grain or extent’
AND ‘ecology’ (to eliminate hits that were in other fields).
This yielded c. 8500 papers, from which we could extract spe-
cies richness at more than one scale in response to ecological
treatment from 103 comparisons within 52 studies (several
studies reported responses from more than one driver, taxo-
nomic group, or study site). A list of the studies and their
data are given in Appendix S2.
With this collection of studies, we asked how frequent, and

in which direction, the change in biodiversity was influenced
by spatial scale. We coded the log ratio effect size for any case
where species richness was lower in the treatment than the
control as negative, and any case where species richness was
higher in the treatment than in the control as positive. Unfor-
tunately, we do not have estimates of uncertainty for most

studies (i.e. most studies did not provide an estimate of vari-
ance at the largest scale, and it was not possible to extract
variance for many smaller scale studies), and so cannot
explore potential publication bias using traditional approaches
(e.g. funnel plots). We further note that there is likely some
bias because our search criteria explicitly included ‘scale’ (or
‘grain’, ‘extent’) as a search term. Thus, our meta-analysis
should be taken as a first indication of the frequency and
direction of scale-dependent biodiversity change.
The analysis shown in Fig. 4 shows that scale-dependence

in frequent, and a non-trivial modifier of effect sizes in empiri-
cal studies. Most studies showed consistent positive (upper
right quadrant) or negative (lower left quadrant) effects of the
treatment at both small and large spatial scales. However, this
obscures the reality that there are many instances where
strong effects at one scale were weak at the other. If effect
sizes were scale-free then all points would fall on the 1 : 1
line, but this line explains only 30% of the variance. Further-
more, nearly 12% of comparisons (12/103) showed a reversal
in direction of species richness change from negative to posi-
tive (upper left quadrant), or from positive to negative (lower
right quadrant) from smaller to larger scales, several of which
are quite substantial. While this is lower than the 33% of
crossing rarefaction curves (implying reversals) that we found
in the analysis above (Fig. 3), it again implies that biodiversity
change can not only vary in magnitude, but can often switch
direction. Overall, effect size at one scale is a poor predictor
of effect size at a different scale.
Given the poor fit of the 1 : 1 line to predict effect sizes

across scales, we can be reasonably certain that scale-depen-
dence is important. However, we can also use the information
to evaluate the nature of this scale-dependence in a deeper
way. For example, the simple alternative hypotheses we pre-
sented in Fig. 1 illustrate different ways that scale-dependence
can occur. If biodiversity change is ‘well-behaved’ as in
Fig. 1a, we might expect that there would be a consistent
increase in the difference in species richness with increasing
scale. This would mean that points should be more likely to
fall below the 1 : 1 line in the negative-negative (lower left)
quadrat (larger reductions in richness at larger scales); and
above the 1 : 1 line in the positive-positive (upper right) quad-
rat (larger increases in richness at larger scales). While there
are many cases that fall in these zones, this pattern is in fact
less frequent than the opposite, where effect sizes tend to
decrease with increasing scale. Indeed, an unconstrained
regression shows that the slope is positive, but significantly
< 1 (slope = 0.65 � 0.074; P < 0.01). This relationship is still
relatively weak, but explains more of the variation than the
regression constrained to 1 : 1 in effect sizes across scales
(R2 = 0.43), and suggests that overall effect sizes at smaller
scales are on average larger than effect sizes at larger scales.
We categorised the different ecological drivers from these

studies, and found that studies from three drivers in particular –
invasive species, land use change, and grazers/predators –
showed significantly larger effect sizes at small compared to
larger spatial scales (see Fig. S1). These findings reinforce an
earlier meta-analysis by Powell et al. (2011), who found that the
effect sizes of invasive species on plant richness systematically
declined with increasing spatial scale. Because such small-scale
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estimates of biodiversity change are often used as inputs, for
example, into ‘biodiversity scenarios’ models that project future
diversity loss (e.g. Alroy 2017; Newbold et al. 2017), we suspect
that these analyses may overestimate the actual change observed
at larger management-relevant scales.

TOWARDS A FRAMEWORK TO ESTIMATE SCALE-

DEPENDENT MULTIDIMENSIONAL BIODIVERSITY

CHANGE

Our above empirical review emphasises what has been sus-
pected for some time, but not heretofore systematically quan-
tified; comparisons of biodiversity and its change from site to
site are not well captured by a single number (Figs 2 and 3)
nor a single scale of observation (Fig. 4). However, from a
methodological perspective, the recognition that biodiversity
is multidimensional and scale-dependent is nothing new. There
have been hundreds of publications aimed at developing, ana-
lysing and comparing various methodologies that can capture
some of this complexity.
Three of the most commonly used and recommended

approaches for dealing with the multidimensional scaling
problem in biodiversity studies include: (1) converting species
richness into other measures that incorporate the relative
abundances of species, such as Shannon’s or Simpson’s diver-
sity indices (e.g. Hill 1973; Lande 1996; Jost 2006, 2007); (2)
comparing species richness values after controlling for sam-
pling effort in the numbers of samples or individuals through
rarefaction (e.g. Hurlbert 1971; Simberloff 1972; Gotelli &
Colwell 2001; Cayuela et al. 2015); and (3) extrapolating spe-
cies richness values to a hypothetical asymptote based on the
estimation of the number of undetected species (e.g. Chao
1984; Colwell & Coddington 1994; Chao et al. 2009).

Importantly, these have been combined into a single statistical
framework that uses both interpolation and extrapolation
(e.g. Chao & Jost 2012; Colwell et al. 2012), and can be
applied to Hill numbers, a family of diversity metrics that give
different weighting to the importance of rare and common
species (e.g. Chao et al. 2014a).
Despite these advances, this framework does not fully

solve the problem of spatial scale. For example, rarefactions
that control for the numbers of individuals will still identify
scale-dependent species richness rankings that depend on
the numbers of individuals to which species richness is rar-
efied (e.g. Gotelli & Colwell 2001; Cao et al. 2007; Chase &
Knight 2013; Cayuela et al. 2015). On the other hand,
diversity extrapolations compare only the maximum diver-
sity in a community at a hypothetical sampling asymptote
(e.g. the largest scale in Fig. 1), which may require different
levels of sampling intensity to achieve for different treat-
ment groups (Chao et al. 2009) and do not capture differ-
ences in the rise to that asymptote. Metrics that quantify
differences in evenness (e.g. Shannon’s, Simpson’s), can cap-
ture some of the differences observed (e.g. Hill 1973; Chao
et al. 2014a), but as we described above, few studies use
more than a single biodiversity metric which is necessary in
order to fully evaluate the complexity of biodiversity
change, nor do they consider what any similarities or differ-
ences in the metrics mean.

CONSTRUCTING AND COMPARING ELEMENTS OF

RAREFACTION CURVES

Gotelli & Colwell (2001) contrasted several types of rarefac-
tion and accumulation curves which contain complementary
information on how species diversity varies with sampling

Figure 4 Results of a meta-analysis of scale-dependent responses to a number of different ecological drivers (see Appendix S2). Points represent the log

response ratio comparing species richness in control compared to treatments in a given comparison measured at the smallest (x-value) and largest (y-value)

scale. The solid line indicates the 1 : 1 line expected if effect sizes were not scale-dependent. Points above and below this line indicate effect sizes that are

larger or smaller, respectively, as scale increases; points in the upper left and lower right quadrats represent cases where the direction of change shifted

from positive to negative, or vice versa, with increasing scale. The dashed line indicates the best fit correlation, which is significantly different than the 1 : 1

line (P < 0.01), indicating that overall, effect sizes tend to be larger at smaller scales than at larger scales. Colours for points indicate categorisations into

different ecological drivers.
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effort and scale. Here, we focus on two that are useful for
making comparisons across scales and dissecting the relation-
ships between different factors associated with biodiversity
measurements: sample-based rarefaction (SBR) and IBR.
Sample-based rarefaction considers increases in the numbers

of species as the numbers of sampling units increases (see
Chiarucci et al. 2008 for early uses of this concept). The rar-
efaction curve is an average of different accumulations, in
which the ordering of the accumulated samples is random. In
our discussion, we modify the original SBR, which is not spa-
tially explicit, to create the spatial SBR (sSBR) that keeps
spatial structure explicit (Fig. 5a), that is, one starts with a
single plot, then adds the closest plot, and so on until all plots
are included, and the processes are repeated across starting
plots (Chiarucci et al. 2009) (we prefer the sSBR terminology
rather than ‘spatially constrained rarefaction’ coined by
Chiarucci et al. 2009, because their term does not differentiate
whether the rarefaction is sample- or individual based). It is
important to note that sSBR is one form of what investigators

have generically called species–area relationships (Scheiner
2003). The sSBR, however, differs in some important ways
from the nested species area relationships that are most com-
monly used in macroecological studies (e.g. Storch 2016), even
though it is possible to estimate one from the other with cer-
tain assumptions (e.g. Azaele et al. 2015; Kunin et al. 2018).
We focus here on sSBR curves and their derivatives, rather
than nested species area relationships, because the sSBR is
more closely aligned with the way that the vast majority of
field biologists collect and analyse their data.
From the sSBR, we can derive the most commonly used

metrics associated with species richness (S) using Whittaker’s
(1960) multiplicative diversity partition c = a 9 b (Table 1)
(see also Jost 2007; Tuomisto 2010) (see Crist & Veech 2006
for an additive partition within a similar approach). Specifi-
cally, we can estimate species richness at the small scale,
which we call a-diversity and abbreviate as aS. Typically, this
will be derived as an average value from a number of repli-
cates or sampling plots. Next, we can estimate species richness
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Figure 5 (a) Spatial sample-based rarefaction as defined in text. The average number of species in a sample is defined as the a-scale, and the total number

of species across samples is defined as the c-scale. From this, we can derive local richness (aS), regional richness (cS), and b-richness (bs =
cS/aS). (b–d)

individual-based rarefaction curves (IBR) from a-scale samples (dashed lines) and c-scale samples (solid lines). From this, we can visualise Sn and PIE for

each scale, and the differences between them (bSn
, bPIE). Other metrics presented in Table 1 are not shown for clarity. (b) illustrates a case where there is

no aggregation in the community, and the IBRs from the a- and c-scale completely overlap. (c) illustrates a case where there is considerable aggregation in

the community, and the IBRs from the a- and c-scale are completely different; here, bSn
and bPIE are high. (d) illustrates a case where there is some

aggregation in the community, it is mostly manifest among the rarer species, such that there is no bPIE, but there is bSn
.
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at the large scale, which we call c-diversity and abbreviate as
cS. This will typically be derived from the total numbers of
species observed among all replicates or samples (nevertheless,
it is important to note that simply adding up species encoun-
tered in from multiple sampling plots within a larger regional
extent will typically be far from a complete survey of the true
c-diversity in that entire extent). Finally, we can estimate the
turnover in species from smaller to larger scales as b-diversity
(b = c/a), which we abbreviate as bS.
Our definitions of a-, b- and c-diversity are not intended to

define any particular features of a given community, such as
zones where species interact and coexist, or where a given spe-
cies pool is defined. It is our view that it is unlikely that any
discrete scale can be reasonably defined to be explicitly ‘local’
or ‘regional’, but rather these demarcations are a somewhat
arbitrary way to define smaller and larger scale estimates of
diversity and their comparison. Nevertheless, for specific com-
parisons, it is critical to make sure that a- and c-scale com-
parisons are done with similar sampling effort (e.g. Gotelli &
Colwell 2001). We also note that our use of b-diversity in the
context of the diversity partition is intended to capture varia-
tion within a given treatment of an ecological driver, and is
quite different than approaches that compare compositional
differences (Tuomisto 2010; Anderson et al. 2011).
Critically, the spatially explicit and sample-based structure

of the sSBR and values derived from it (e.g. a-, b-, c-diver-
sity) are jointly determined by the total numbers of individu-
als in a community (N), the shape of the SAD (including total
species numbers and their relative abundances), and their
intraspecific aggregations or clumping, and these components
can have bi-directional effects. Furthermore, changes in any

one of the components can lead to similar looking sSBRs,
and changes in two or more components can lead to quite
complex outcomes (e.g. Chase & Knight 2013; Powell et al.
2013). Thus, one of our main goals in evaluating the multidi-
mensional and scale-dependent way by which biodiversity
changes across space or time is to dissect the influence of each
of the components on the observed sSBR. While we discuss
N, the SAD and aggregation as the components influencing
changes in diversity, it is important to note that our approach
is agnostic to mechanism. Thus, while changes in observed S
that are correlated with changes in total N in the community
is consistent with some forms of the ‘more individuals hypoth-
esis’ (sensu Srivastava & Lawton 1998), for example, we can-
not necessarily infer that change in N causes change in S in a
unidirectional way, but simply that they are correlated (e.g.
Storch et al. 2018).
However, the sSBR is the most complex curve that pre-

serves information on differences among two or more commu-
nities N, SAD and aggregation, the IBR is the most simple
(Fig. 5b). Specifically, in the IBR, individuals are pooled
across all samples in a treatment and selected at random, so
that any spatial structure in intraspecific aggregation and dif-
ferences in the density of individuals in sampling plots is
removed (e.g. Hurlbert 1971; Simberloff 1972; Gotelli & Col-
well 2001). While the distance along the x-axis (number of
individuals) is determined by N, the shape of the IBR is deter-
mined only by the SAD. The height of the IBR is the total
numbers of species (S) observed among all of the samples
pooled, and the steepness of the slope near the origin is deter-
mined by the relative abundances (evenness) of species repre-
sented in the pooled samples (Hurlbert 1971; Gotelli &

Table 1 Definitions and interpretations of the biodiversity metrics for scale-explicit analyses

Metric Definition Interpretation

N Total numbers of individuals Measure of density of individuals. Because N scales

roughly linearly with area (i.e. density is scale-

independent) we do not need to measure N at

multiple scales
aS, cS Observed richness of species from a-scale (average of

observations) and from c-scale (sum of observations)

Number of species at local scale (= a-diversity) and
large scale (= c-diversity)

aSn,
cSn The expected richness for n randomly sampled

individuals (Hurlbert 1971). Can be calculated from

a- or c-scale

Estimate of richness at a- or c-scale after controlling

for differences due to aggregation and number of

individuals [i.e. only reflects species abundance

distribution (SAD)]
aPIE, cPIE Probability of interspecific encounter

(Sn = 2 � Sn = 1, Hurlbert 1971; Olszweski 2004).

Can be calculated from a- or c-scale.

Measure of evenness at a- or c-scale that is quantified

by the slope at the base of the rarefaction curve;

sensitive to common species
aSPIE,

cSPIE Equally abundant species needed to yield PIE

(Jost 2006) (= 1/(1 � PIE)). Can be calculated from

a- or c-scale

Effective number of species of PIE (= 1 � Simpson’s)

that is easier to compare with S; measured at a- or
c-scale

bS Ratio of total treatment cS and average plot aS

(Whittaker 1960)

More species turnover results in larger bS due to

increases in spatial aggregation, N, and/or unevenness

of the SAD

bPIE Ratio of total treatment cPIE and aPIE (Olszewski

2004)

Higher difference between cPIE and aPIE indicates

higher levels of aggregation

bSn
Ratio of total treatment cSn and

aSn Like bS but emphasises aggregation due to common

and rare species

bSPIE
Ratio of total treatment cSPIE and aSPIE (Jost 2007) Like bS but emphasises aggregation due to common

species only
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Colwell 2001; Olszewski 2004; Chase & Knight 2013; Cayuela
et al. 2015).
From the IBR, we can derive a number of parameters of

interest (Fig. 5b–d; Table 1). To derive these parameters
across scales, we calculate two IBRs, one using only the N
and S from samples collected at the a-scale (i.e. from a single
replicate or plot, or several plots within a locality embedded
within a metacommunity) and one from the c-scale across all
replicates or localities within a given treatment or type (a mul-
ti-scale version of this approach, including benchmark tests
and evaluation of statistical error, is presented in McGlinn
et al. 2018). From the a- and c-scale IBRs, and the measures
we can derive from these, we can begin to understand the
relationship between N, the SAD and aggregation and the
observed diversity patterns.

Disentangling the influence of N by comparing rarefied richness

values

We can first examine whether any differences in aS or cS
observed from the sSBR result from differences in total N
among treatments. Specifically, with the IBR, we can calculate
the numbers of species expected when rarefied to a common
N, known as rarefied richness, abbreviated as Sn. Because dif-
ferences in rarefied richness are also scale-dependent (e.g. Cao
et al. 2007; Chase & Knight 2013; Cayuela et al. 2015), we
advise comparing Sn at multiple values of N. Furthermore, we
can compare values of Sn at different scales of sampling,
which we denote aSn and

cSn, respectively.

Disentangling the influence of SAD by comparing elements of IBR

curves

If the shapes of the IBRs differ between treatments, we can
infer that SADs differ via changes in the numbers of species
(S), the relative abundances (evenness) of species, or both (as
shown above in Fig. 1). To evaluate this, we can perform sta-
tistical comparisons at two extremes of the IBR, the upper
limit (S) at the right extreme of the curve and the slope at the
base of the IBR. The upper limit of the IBR can be calculated
in a number of ways, depending on which sampling controls
are most appropriate, including the rarefied richness Sn at
standardised values of N (e.g. Gotelli & Colwell 2001), S cal-
culated to a fixed coverage of sample completeness (e.g. Chao
& Jost 2012) or an extrapolation to a hypothetical asymptote
where coverage is complete (e.g. Chao 1984; Chao et al. 2009,
2014a). The slope at the base of the IBR, as described above,
is equivalent to the bias-corrected PIE (Hurlbert 1971; Ols-
zewski 2004), and represents a measure of evenness in the
community. The PIE can be measured from samples at the a-
scale (aPIE), or at the c-scale (cPIE). Because PIE is the same
as 1 � Simpson’s diversity index, we can convert it to an
effective number of species (SPIE) as above, and calculate this
quantity at each spatial scale: aSPIE and cSPIE. Both PIE and
SPIE can provide useful information for comparisons between
two or more communities (e.g. Dauby & Hardy 2012).
Because S and PIE (or SPIE) are indicative of different parts
of the IBR, and also reflect different locations along the con-
tinuum of the Hill numbers (e.g. Hill 1973; Jost 2006), they

conceptually link the IBR with Hill numbers, which differen-
tially weight common vs. rare species.

Disentangling b-diversity due to aggregation using IBR curves

Raw measures of b-diversity from the sSBR are influenced by
N and the shape of the SAD, as well as by spatial aggrega-
tion. To tease apart the specific influence of aggregation on b-
diversity, we can compare the c-scale IBR (which randomly
samples individuals regardless of their spatial position), to the
a-scale IBR (which preserves effects of aggregation within
plots or replicates).
First, we can compute bPIE as difference between the slopes

defined by aPIE and cPIE at the base of the respective IBRs
(Fig. 5b–d) (Olszewski 2004; Dauby & Hardy 2012). And we
can convert this to an effective number of species by taking
the ratio of small-scale (aSPIE) to large-scale (cSPIE) to yield
bSPIE

(Jost 2007; Tuomisto 2010). Second, we can compute bSn

as the ratio of the number of species expected from a given n
from the c-scale IBR (cSn) to the number of species observed
from a given n from the a-scale IBR (aSn). Three qualitative
outcomes of these different components of b-diversity are pos-
sible. If there is no aggregation, the c-scale and a-scale IBRs
will not differ in their shapes and there will be no differences
due to spatial clumping in the landscape. Thus, bPIE, bSPIE

,
and bSn

will equal 1 (Fig. 5b). Second, if there is strong aggre-
gation in the community, there can be large differences in
c-scale and a-scale IBRs, leading to high levels of bPIE (and
bSPIE

), as well as bSn
(Fig. 5c). Finally, it is possible that the

c-scale and a-scale IBRs can differ in their shapes, but do not
differ in PIE, which measures turnover in the most common
species, but misses changes that might be due to aggregation
of rarer species in the community. Here, we would observe
bPIE (or bSPIE

) = 1, but bSn
> 1 (Fig. 5d).

RECOMMENDED PROTOCOL FOR ANALYSES

DISSECTING BIODIVERSITY DATA WITH A CASE

STUDY

Next, we provide a recipe for using the multiple metrics at
multiple scales, as presented above and overviewed in Table 1.
We describe how one might address these questions generi-
cally, and illustrate this recipe with a re-analysis of an experi-
ment on the effect of nutrient additions on macroinvertebrates
and amphibians in experimental ponds, showing how deeper
insights can be gained than are possible with a more tradi-
tional perspective (for full details, see Chase 2010). Raw data
used for these analyses are provided in Appendix S3.
R code for these analyses, as well as a series of vignettes

and another case study, are available in mobr statistical pack-
age (https://github.com/MoBiodiv/mobr) (McGlinn et al.
2018). We specifically used one-way PERMANOVA to assess the
treatment effect on estimates of diversity measured at the a-
scale (= 1 mesocosm) (treatment group labels were permuted
999 times to generate a null distribution, and then the tail
probability for a treatment effect was evaluated by comparing
the observed difference to the null distribution). At the c-scale
(= 15 mesocosms), the null distribution was generated by per-
muting treatment group labels across samples, pooling the
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groups, and then calculating the difference in diversity
between treatments for each permutation. Results are illus-
trated in Fig. 6; some results are not shown for brevity.

Step 1: Do treatments affect the numbers of individuals of all

species (N)?

If treatments differ in N, then any difference in S between
treatments may, in part, be due to treatment effects on N. We
expect that N scales linearly with increasing sampling (unlike
S), and so it should not matter whether the average N per
plot (a-scale), or the total N across plots (c-scale), are com-
pared. In our case study, we found no influence of the nutri-
ent addition treatment on N measured at either scale (P > 0.3;
not shown in Figure).

Step 2: Do treatments affect diversity responses at the a-scale?

Here, we can compare several types of a-scale diversity. Com-
paring effects of the treatment on aS with treatment effects on
aSn allow us to discern any influence of changes in N on the
results. For example, if any treatment-level effects on aS dis-
appear for aSn, we can conclude that the effect was due to
treatment effects on N. However, if there remains a difference
in aSn, we can conclude that the treatment effect on aS was
due, at least in part, to changes in the SAD. It is even possi-
ble that the effects can shift between aS and aSn. For example,
McCabe & Gotelli (2000) showed that aS was higher for
stream invertebrates in undisturbed treatments, but that this
effect was reversed when the effect of disturbance on N was
discounted; aSn was higher in disturbed treatments. A differ-
ence in aSPIE implies a change in the dominance patterns of
common species in a community. Alternatively, it is possible
that aSPIE could not vary (or vary little), while there is still an
influence of the treatment on aSn. This would imply that rarer
species are responding to the treatment.
From our case study, we observed that aS did not differ

between the treatments (Fig. 6a), and because there was no
difference in N, the effects of N on aS and aSn did not differ
among treatments (result not shown in figure). Furthermore,
there was no influence of treatment on aSPIE (Fig. 6b), indi-
cating that nutrient addition treatment had no identifiable
effects on N or any measures of diversity that capture differ-
ences in the shape of the SAD at the local scale. Had we
stopped here, we might conclude that there was no interesting
influence of nutrients on biodiversity. However, by looking at
the c-scale, we see that this conclusion is wrong.

Step 3: Do treatments affect diversity responses at the c-scale?

Comparisons of c-scale diversity measures are a straightfor-
ward extension of the a-scale measures, except we use the
totals observed in all samples, rather than the average number
from a single sample. And the relationships among the mea-
sures are the same, where cS is the total richness of species,
cSn is the richness of species rarefied to a common N, and
cPIE and cSPIE consider the relative abundances of species
and conversion into an effective number of species, respec-
tively.

From our case study, and in contrast to the local-scale
result, we found a significant increase in cS (Fig. 6c) and cSn

(not shown) with nutrient additions. However, there was no
influence of nutrient additions on cPIE (not shown) or cSPIE

(Fig. 6d). This suggests that it is the rare species end of the
SAD that changed among the treatments; nutrient enrichment
allowed more rare species to persist regionally, but not locally.
Further, the qualitatively different results at the c-and a-scale
imply that b-diversity was influenced by the nutrient addition
treatment.

Step 4: Do treatments affect b-diversity?

First, we can test for differences in bS among treatments.
However, as discussed above, any differences could occur due
to a combination of changes in N, the SAD or aggregation. If
the treatment influences aggregation, we would expect a dif-
ference in bSn

between treatments. If the treatment affects the
aggregation of common species, we would also expect to see
treatment-level effects on bSPIE

.
As anticipated from the scale-dependent results we observed

at the a- and c-scale (Fig. 6a,c), we found strong effects of
nutrient addition on bS (Fig. 6e), and on bSn

(Fig. 6f). And
because we found no difference in the a- and c-scale results
for SPIE, we unsurprisingly found no treatment-level effect on
bSPIE

(Fig. 6g). Overall, these patterns suggest that a core
group of common species were present across replicates in
both treatments, and that a group of rarer species were largely
responsible for the treatment-level responses at the c-scale.
Specifically, there was more turnover among those rare species
in the high nutrient treatment, which may have resulted from
ecological drift and/or priority effects.

CONCLUSIONS

There are multiple pathways by which ecological factors
can influence biodiversity across scales, but most studies
continue to rely on comparisons of a single summary vari-
able – usually species richness (S) – at a single spatial scale.
As a consequence, despite thousands of published studies
quantifying how species richness changes in response to nat-
ural and anthropogenic drivers, we know much less than
we think about how and why biodiversity changes from
place to place and time to time. This is particularly prob-
lematic when trying to achieve synthesis across studies of
multiple ecological drivers, through meta-analyses and other
means, because effect sizes are highly confounded by spatial
scale (see also Chase & Knight 2013). We are currently lim-
ited in our ability to create realistic ‘biodiversity scenarios’
models that project future biodiversity loss in response to
changing ecological conditions.
To move forward, it is critical to consider the multidimen-

sional and scale-dependent nature of biodiversity and its
change. Fortunately, there is a rich literature on other mea-
sures of biodiversity that can explicitly complement compar-
isons of S, and there are easy ways that empiricists can
explicitly deal with issues of spatial scaling (i.e. replicates
nested within treatments). We have advocated for measures of
biodiversity and its scaling that can explicitly be used to
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disentangle the influence of N, the SAD and aggregation via
consideration of different aspects of the individual-level rar-
efaction curve that emphasise different underlying components

(e.g. Sn, SPIE, at the a and c scales). For a majority of studies,
these can be estimated in a straightforward way with data that
are already, or could be, collected.
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Figure 6 Effect of nutrient additions on several measurements of biodiversity from Table 1 (see data in Appendix S3). Each biodiversity measure was

calculated at the a-scale (1 mesocosm) (Panels a,b), c-scale (15 mesocosms) (Panels c,d), as well as the b-scale (i.e. turnover across scales, c/a)(Panels d–f).
See Chase (2010) for details on the experimental design and the mobr R package (McGlinn et al. 2018) for details on the statistical methods.

© 2018 John Wiley & Sons Ltd/CNRS

1748 J. M. Chase et al. Review and Synthesis



The approach we advocate will often require more complex
collecting and reporting of data (i.e. absolute species abun-
dances at multiple scales) and more complex analyses of mul-
tiple response variables. This will create a more nuanced view
of what biodiversity is and how it varies – biodiversity is not
a single number, and it cannot be compared at a single scale
to estimate how it responds to ecological factors. However,
this more nuanced view is necessary to resolve long-standing
debates. For example, Blowes et al. (2017) recently used this
approach to show that the debate about whether environmen-
tal vs. historical biogeographic controls influence global biodi-
versity patterns of reef-associated fishes can be progressed by
dissecting patterns of species richness in a scale-explicit way.
Finally, there are many extensions of the approach that we

advocate which are necessary to be able to fully understand,
and synthesise, how biodiversity changes in time and space.
First, as we mentioned above, the approach we have taken
views the scale in a discrete two-scale way (e.g. a-, b-, c-diver-
sity), while scale is continuous. In a companion paper, we
develop a multi-scale methodology (McGlinn et al. 2018). Sec-
ond, we have only focused on taxonomic diversity, although
interest in other measures of diversity has increased greatly in
recent years. These measures, such as functional and phyloge-
netic diversity, show patterns of scaling similar to taxonomic
diversity (e.g. Morlon et al. 2011; Smith et al. 2013) and will
thus show scale-dependence when making comparisons.
Approaches similar to those advocated here are emerging for
these other types of diversity (Chao et al. 2014b, 2015; Chiu
et al. 2014), and so we anticipate that a family of approaches
for comparing scale-dependent diversity responses to ecologi-
cal drivers at multiple levels of organization will soon emerge.
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