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Abstract. Biodiversity sampling is labor intensive, and a substantial fraction of a biota is
often represented by species of very low abundance, which typically remain undetected by
biodiversity surveys. Statistical methods are widely used to estimate the asymptotic number of
species present, including species not yet detected. Additional sampling is required to detect
and identify these species, but richness estimators do not indicate how much sampling effort
(additional individuals or samples) would be necessary to reach the asymptote of the species
accumulation curve. Here we develop the first statistically rigorous nonparametric method for
estimating the minimum number of additional individuals, samples, or sampling area required
to detect any arbitrary proportion (including 100%) of the estimated asymptotic species
richness. The method uses the Chao1 and Chao2 nonparametric estimators of asymptotic
richness, which are based on the frequencies of rare species in the original sampling data. To
evaluate the performance of the proposed method, we randomly subsampled individuals or
quadrats from two large biodiversity inventories (light trap captures of Lepidoptera in Great
Britain and censuses of woody plants on Barro Colorado Island [BCI], Panama). The
simulation results suggest that the method performs well but is slightly conservative for small
sample sizes. Analyses of the BCI results suggest that the method is robust to
nonindependence arising from small-scale spatial aggregation of species occurrences. When
the method was applied to seven published biodiversity data sets, the additional sampling
effort necessary to capture all the estimated species ranged from 1.05 to 10.67 times the
original sample (median ’ 2.23). Substantially less effort is needed to detect 90% of the species
(0.33–1.10 times the original effort; median ’ 0.80). An Excel spreadsheet tool is provided for
calculating necessary sampling effort for either abundance data or replicated incidence data.

Key words: asymptotic species richness estimators; biodiversity sampling; sample size; Turing’s
frequency formula.

INTRODUCTION

Estimating species richness, a central activity in

studies of biodiversity (Magurran 2004), presents a

statistical challenge because it is rarely possible to collect

enough individuals or samples to discover all the species

that are present (Gotelli and Colwell 2001). Neverthe-

less, asymptotic species richness can be estimated

statistically from a single random sample of individuals

(abundance data) or from a collection of random

samples in which only species occurrences are recorded

(incidence data). Three methods for estimating species

richness are (1) fitting a statistical distribution to rank

abundance data, (2) extrapolating a species accumula-

tion curve to its asymptote, and (3) estimating the

asymptotic number of species with nonparametric

estimators (Longino et al. 2002).

For individual-based (abundance) data, the area

under a fitted, lognormal abundance distribution has

been used to estimate the total number of species,

including undetected rare species that are hidden by a

‘‘veil line’’ of incomplete sampling (Preston 1962). Other

species abundance models such as the log-series,

geometric, negative binomial, Zipf-Mandelbrot, and

the broken-stick (Magurran 2004) can also be fit to

abundance data to estimate asymptotic species richness.

Curve-fitting methods, which can be applied to both

abundance data and incidence data, extrapolate a fitted

function such as the Michaelis-Menten equation or a

mixture model out to the asymptote of the species-

accumulation graph (Soberón and Llorente 1993,

Colwell et al. 2004). A variety of nonparametric

estimators can also be used to estimate total species

number from either abundance or incidence data (Chao

2005). Nonparametric estimators, which are based on

frequency counts, use information on the number of rare

or infrequent species in the collection to estimate the

number of undetected species.
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All of these methods generate estimates of asymptotic

species richness, and many also generate variances and

confidence intervals about the estimates. Connolly et al.

(2005) provided a formula for estimating how much

sampling is required to unveil the parametric lognormal

abundance distribution. However, no models to date

have included a nonparametric estimate of the sampling

effort (number of individuals or samples) that would be

necessary to reach the asymptote of a species accumu-

lation curve by actually detecting all species present.

Because biodiversity sampling is labor intensive (Lon-

gino and Colwell 1997, Lawton et al. 1998), such an

estimate of sampling effort is of great interest for

effective planning of biotic inventories.

In this paper, we derive estimators for the sampling

effort required to reach the asymptotic richness estimat-

ed by Chao1 and Chao2, two widely used nonparametric

estimators of species richness for abundance and

incidence data, respectively. The relatively simple

solutions are based on a derivation by the founder of

modern computer science, Alan Turing, who used it in

cryptographic analyses during World War II. We

provide an Excel spreadsheet macro for performing the

calculations, and we present estimates of complete

sampling effort for several published biodiversity

surveys. Simulation results based on data sets from

two large biodiversity inventories demonstrate the

robustness of the proposed method to departures from

some of the sampling assumptions.

SAMPLE SIZES FOR ASYMPTOTIC ESTIMATORS

Abundance data

Assume that there are S species in a target biological

community or assemblage. A random sample of n

individuals is selected (with replacement) from the

community. A lower bound of species richness is

obtained as

Sobs þ ð1� 1=nÞf 2
1 =ð2f2Þ ð1Þ

where Sobs is the number of species observed, and fr is

the count (frequency) of species that are observed

exactly r times in the sample (Chao 1989). Thus, f1 is

the number of ‘‘singletons,’’ or species represented by

exactly one individual in the sample; f2 is the number of

‘‘doubletons,’’ or species represented by exactly two

individuals in the sample; and f0 is the unknown number

of species that are present in the community but not

detected by the sample and therefore each have zero

individuals in the sample. Because the sample size n is

often large, we can ignore the term (1� 1/n) in Eq. 1 and

obtain the following Chao1 estimator (Sest) for species

richness if f2 . 0:

Sest ¼ Sobs þ f 2
1 =ð2f2Þ: ð2Þ

In this equation, f̂0 ¼ f 2
1 /(2f2) is an estimator for the

number of species present but undetected in the sample.

The Chao1 estimator represents a universal lower bound

in the sense that it is valid under all types of species

abundance distribution. Thus, all estimated sampling

effort derived in this paper represents minimum effort. If

f2 ¼ 0, the Chao1 estimator is replaced by Sest ¼ Sobs þ
f1( f1 � 1)/[2( f2 þ 1)] (Chao 2005).

Even before we derive a formal result, Eq. 2 already

provides a heuristic ‘‘stopping rule’’ for biodiversity

sampling: Sampling will be complete when every species

is represented by at least two individuals (no singletons),

so that f̂0 ¼ 0 and Sest ¼ Sobs. No additional sampling

effort is needed once this condition is satisfied, as there

are no additional undetected species. Because f̂0 ¼ f 2
1 /

(2f2) may not be an integer, the condition f̂0¼ 0 in data

analysis is modified to f̂0 , 0.5. That is, when there are

fewer than 0.5 species remaining undetected, the

sampling is deemed complete and no additional effort

is needed. When f̂0 � 0.5, the problem is to estimate the

additional number of individuals needed to observe the

remaining, undetected species. Applying the above

stopping rule for completeness, sampling should contin-

ue until singletons vanish. As we will see, this may

require a very large additional sample size, because by

the time the total sampling effort is extensive enough to

reveal two individuals of each species found only once in

the original sample, single individuals of additional

species will have inevitably surfaced. For hyperdiverse

communities with a large proportion of very rare

species, the challenge of estimating richness from sample

data is daunting (Mao and Colwell 2005).

According to Good (1953, 2000), Alan Turing studied

aspects of this problem in the context of deciphering

encoded messages intercepted from the German military

during World War II. Assume that an original sample of

size n is available. Turing (and others) proved that, for

the next individual sampled, the probability of encoun-

tering each of the fr species in frequency class r, r¼ 0, 1,

. . . is approximately

ðr þ 1Þfrþ1=ðnfrÞ: ð3Þ

As a special case, the probability of encountering each of

the undetected species (r ¼ 0) is thus f1/(nf0). Because

there are f0 species in the frequency class r ¼ 0, the

probability q0 that the next individual sampled repre-

sents a previously undetected species can be estimated by

q0 ¼ f0 3 f1=ðnf0Þ ¼ f1=n: ð4Þ

Good (1953, 2000) interpreted Eq. 3 in the following

way: the relative abundance (or discovery probability) of

any species in the frequency class r is approximately (rþ
1)frþ1/(nfr). A remarkable implication for r¼0 is that the

relative abundance for each undetected species is

roughly f1/(nf0), and the total relative abundances of

the undetected species can thus be accurately estimated

by q0 ¼ f1/n. The usual maximum likelihood estimate

(MLE) for the relative abundance of any undetected

species is 0, but this estimate is obviously not reasonable

when sampling is incomplete. Eq. 4 is a special case of

the nonparametric empirical Bayes method, in which the
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estimator is ‘‘updated’’ by information contained in the

sample (the proportion of singletons), but the functional

form of the prior distribution is not assumed (Good

2000).

For our purposes, the information in the original

sample will be used to predict the minimum number m of

additional observations (individuals) needed to achieve

the following version of the stopping rule: There are no

singletons in the enlarged sample of size n þ m.

Equivalently, the expected number of singletons in the

enlarged sample of size nþm is less than 0.5 (because the

theoretical expected value may not be an integer).

Note that the singletons in the enlarged sample of size

n þ m include two groups of species: (1) any species

represented by only a singleton in the original sample for

which no additional individuals are detected by the

enlarged sample, and (2) any species not detected in the

original sample for which exactly one individual is

observed in the additional sampling. Let pi be the

relative abundance (or discovery probability) of the ith

species in the community and Xi be the number of

individuals of the ith species observed in the original

sample. Then the expected number of species in the first

group is

XS

i¼1

ð1� piÞmIðXi ¼ 1Þ ð5Þ

where I(�) is an indicator function that equals 1 when

true and 0 otherwise, meaning in this case that only

singletons (Xi ¼ 1) in the original sample contribute to

the sum. The term (1� pi)
m denotes the probability that

the ith species is not observed in any of the m additional

observations. Similarly, the expected number of species

in the second group is

XS

i¼1

mpið1� piÞm�1IðXi ¼ 0Þ ð6Þ

where the term mpi (1 � pi)
m�1 denotes the probability

that the ith species is observed only once in the m

additional observations. In this case, only undetected

species (Xi ¼ 0) in the original sample contribute to the

sum. Based on the information in the original sample

data, the expected number of singletons in the enlarged

sample with size n þ m is

XS

i¼1

ð1� piÞmIðXi ¼ 1Þ þ
XS

i¼1

mpið1� piÞm�1IðXi ¼ 0Þ:

ð7Þ

Applying Turing’s formula to the first sum in Eq. 7 and

using Eq. 3 with r ¼ 1, we have that the relative

abundance pi for a singleton (i.e., Xi ¼ 1) is approxi-

mately equal to 2f2/(nf1). Thus, a first-order approxima-

tion for the number of singletons represented by first

sum in Eq. 7 can be found by substituting pi in this sum

by 2f2/(nf1), noting that there are f1 of them:

XS

i¼1

ð1� piÞmIðXi ¼ 1Þ

’ f1 1� 2f2
nf1

� �m

’ f1 exp �m

n

2f2
f1

� �� �
: ð8Þ

Similarly, for the second sum in Eq. 7, the relative

abundance for an undetected species is approximately

f1/(nf0), using Eq. 3 with r¼ 0. Thus the second sum in

Eq. 7 can be approximated by

XS

i¼1

mpið1� piÞm�1IðXi ¼ 0Þ

’ f0m
f1

nf0

� �
1� f1

nf0

� �m�1

’ f1
m

n
exp �m

n

f1
f0

� �� �
: ð9Þ

Note that f0 appears in Eq. 9, indicating we have to

provide an estimate for the number of undetected

species. From Eq. 2, we substitute f̂0 ¼ f 2
1 /(2f2) into Eq.

9 as an estimate of the number of undetected species and

obtain

f1
m

n
exp �m

n

f1

f̂0

 !" #
¼ f1

m

n
exp �m

n

2f2
f1

� �� �
: ð9aÞ

Combining Eq. 8 and Eq. 9a, the approximate number

of singletons in the enlarged sample with size n þ m is

(letting x ¼ m/n, the ratio between the additional and

original sample sizes) f1(1 þ x)exp[�x(2f2/f1)], which is

less than 0.5 if and only if

2f1ð1þ xÞ, exp x
2f2
f1

� �� �
: ð10Þ

The function h(x) ¼ 2 f1(1 þ x) for x . 0 is a linear

function of x, whereas v(x) ¼ exp[x(2f2/f1)] is an

exponentially increasing function of x (see the figure in

the Excel spreadsheet calculator in the Appendix). To

estimate m, if we first find the solution x* for the

equation 2f1(1 þ x) ¼ exp[x(2f2/f1)], then the minimum

required additional number of individuals is m¼ nx*. A

bootstrap percentile method (Efron and Tibshirani

1993:170) described in the Supplement can be used to

construct a lower confidence limit.

In many cases, the sampling effort required to reach

the asymptote may be prohibitively large (as we later

show for empirical data sets). However, a large fraction

of the Sest may be reached with considerably less

sampling. If g is the fraction of Sest that is desired (0

, g , 1), then the objective is to find the additional

sample size mg such that the number of species reaches

the target value gSest, i.e., the number of previously

undetected species discovered in the additional sample is

gSest� Sobs. In order to make the requirement sensible,

the target number must be greater than the observed

number in the current sample, so we must require that

g . Sobs/Sest. We can apply Eq. 10 in Shen et al. (2003)

to predict that the number of previously undetected
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species in the additional sample of size mg approximately

equals

f̂0 1� exp �mg

n

2f2
f1

� �� �� �
: ð11Þ

From Eq. 11, the additional number of individuals

needed to detect a fraction g of Sest is obtained from the

following equation:

f̂0 1� exp �mg

n

2f2
f1

� �� �� �
¼ gSest � Sobs:

This gives the following solution:

mg ’
nf1
2f2

log
f̂0

ð1� gÞSest

" #
: ð12Þ

Incidence data

In most biodiversity studies, individual organisms are

not sampled randomly and independently, as required

by our sampling model and by most statistical models

for biodiversity estimation. Instead, multiple individuals

are collected or censused in traps, baits, quadrats, plots,

or timed surveys. It is these sampling units, and not the

individual organisms, that are actually sampled ran-

domly and independently. For very abundant organisms

(such as microbes), or taxa with clonal growth forms

(such as many plants and invertebrates), it may not even

be possible to count individuals within each sampling

unit, and only their presence or incidence can be

recorded. However, estimation is still possible for a set

of replicated samples in which the incidence of each

species is recorded in the sample.

When applied to incidence data based on t replicated

samples, let Q1 and Q2 represent the number of species

that occur in exactly one sample (‘‘uniques’’) or in

exactly two samples (‘‘duplicates’’), respectively (Colwell

and Coddington 1994). For replicated incidence data,

the estimator of species richness, known as Chao2,

incorporates a correction for small sample size

Sest ¼ Sobs þ ð1� 1=tÞQ2
1=ð2Q2Þ: ð13Þ

Parallel arguments and results allow estimation of m (for

incidence data, m is the number of samples needed to

achieve Sest ¼ Sobs, and mg is the number of samples

needed to achieve gSest). (Details of the derivation are

provided in the Supplement.) For replicated incidence

data, the probability q0 that the next incidence (the next

species collected, regardless of its abundance) represents

a previously undetected species is q0¼Q1/T, where T ¼Pt
i¼1iQi denotes the total number of incidences in t

samples. Thus, q0 also represents the proportion of

previously undetected species in an additional sample.

The additional number of samples needed to reach the

asymptotic Chao2 estimate is equal to m¼ tx*, where x*

is the solution of the following equation:

2Q1ð1þ xÞ ¼ exp x
2Q2

ð1� 1=tÞQ1 þ 2Q2=t

� �
: ð14Þ

To reach a fraction g of Sest for sample-based data, the

required number of additional samples is

mg ’

log 1� t

ðt � 1Þ
2Q2

Q2
1

ðgSest � SobsÞ
� �

log 1� 2Q2

ðt � 1ÞQ1 þ 2Q2

� � : ð15Þ

EMPIRICAL EXAMPLES

Table 1 illustrates the calculation of m and mg (g ¼
0.95 and 0.90) for four examples from the literature for

abundance-based data. Table 2 shows three examples of

incidence-based data. The estimates for m (for g¼ 1.00)

vary considerably, ranging from 1.05 times more data

than the original sample (tropical rain forest tree

seedlings, Butler and Chazdon 1998) to 10.67 times

(forest Lepidoptera; Fisher et al. 1943). Substantially

less effort is needed to detect 95% or 90% of the species.

The probability that the next individual discovered

represents a previously undetected species (for abun-

dance data) or that the next sample includes a previously

undetected species (for replicated incidence data) varies

accordingly from 0.0004 to 0.0556, although these values

are a nonlinear function of sampling effort.

Although these examples include both abundance-

based and incidence-based data, in reality all of the data

sets in Tables 1 and 2 represent some form of sample-

based collection, because individual organisms are not

randomly sampled. For example, the Fisher et al. (1943)

light trap data consist of pooled records of light traps

taken over four years, and the Dahlberg and Odum

(1970) fish data represent multiple trawls, pooled within

a season and across habitats. Both of these data sets

contain a large number of singletons, and it is possible

that some of this rarity reflects the pooling of

heterogeneous samples (Longino et al. 2002). The

Cunningham et al. (2002) data are also pooled pitfall

collections, although these were taken within a single

habitat type. The robustness of our method to the

dependence of sampled individuals will be shown in

Simulation analyses.

Similarly, two of the incidence data sets (Maudsley et

al. 2002, Ellison et al. 2007) are themselves pooled

collections of pitfall traps, litter samples, and other

methods that were used within a single plot, which is

considered the sampling unit for these analyses. Each

sample in the seedbank data of Butler and Chazdon

(1998), in contrast, represented a single soil sample.

When incidence-based methods are used with sample

plots of fixed area, we can estimate the total area that

would be needed to collect all of the species. Ellison et al.

(2007) used a variety of standardized sampling methods

(hand collecting, litter samples, pitfall traps, and baits)

to sample ant occurrences in 18 75 3 75-m plots of red

oak forest in Blackrock, New York, USA. Combining

all sampling methods, 33 species were collected. At the
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plot level, the data set contains eight uniques (species

with one occurrence) and five duplicates (species with

two occurrences). The estimated total number of species

is 39, which would require an additional 62 randomly

selected plots to achieve (Table 2). Because the area of

each plot is 5625 m2, we estimate a total of (18þ 62) 3

5625 ¼ 393 750 m2 ¼ 39.4 ha as a minimum area that

would be needed to detect all of the ant species present.

In contrast, the total area of comparable habitat in the

Blackrock reserve is 1092 ha (B. Schuster, personal

communication), so the necessary sampling represents

;3.6% of the total habitat area.

SIMULATION ANALYSES

We conducted a simulation experiment to examine the

performance of the proposed methods. We treated the

data from each of several large biodiversity surveys/cen-

suses as the true community, generated subsamples from

it, and then used our method to estimate how much

sampling would be needed to reach a fraction (including

100%) of the estimated asymptote. Here we report only

three representative cases because the findings were

consistent with those from other data sets. For

abundance data, we analyzed Lepidoptera records at

light traps in Britain (Fisher et al. 1943; the first example

in Table 1). This data set included 15 609 individuals

representing 240 species. For incidence data, we analyzed

two quadrat sizes (50 3 50 m and 25 3 25 m) from the

50-ha Barro Colorado Island (BCI), Panama, 1985 tree

census (Hubbell et al. 2005). This data set included

238 018 individual trees and shrubs (�1 cm in diameter

at breast height) representing 299 species. Because the

spatial location of each stem in the BCI census was

recorded, we could test the robustness of our method to

spatial aggregation of individuals within and among

species, which is known to be present in these data.

For each data set, we considered a range of 14

subsample sizes. We generated 1000 random subsamples

for each fixed subsample size. Note here that some

subsample sizes were allowed to exceed the total number

of individuals in the inventory or census because our

sampling was conducted with replacement. For each

subsampling level in each data set, we first calculated

Sest, the estimated asymptotic richness, using Chao1 (for

abundance data) or Chao2 (for incidence data), and then

computed the required additional sample size to reach

TABLE 1. Examples of estimated sampling effort for abundance-based data.

Habitat, taxon,
and locale n Sobs Sest f1 f2 q0 g ¼ 1 g ¼ 0.95 g ¼ 0.90 Source

Forest Lepidoptera
at light traps (UK)

15 609 240 296 35 11 0.0022 166 509 32 930 15 718 Table 3 in Fisher et al.
(1943)

Estuarine fish
in trawls (USA)

31 637 70 90 14 5 0.0004 243 369 65 371 34 670 Table 1 in Dahlberg and
Odum (1970) (summarized
in Magurran [2004:220])

Forest lizards in pitfall
traps (USA)

161 9 11 3 2 0.0186 358 167 84 Table 5 in Cunningham
et al. (2002)

Tropical rain forest tree
seedlings (Costa Rica)

952 34 35 2 2 0.0021 1002 � � Butler and Chazdon (1998)

Notes: Each row represents a different data set from the literature. Abbreviations are: n, number of individuals collected; Sobs,
observed species richness; Sest, estimated asymptotic species richness, based on the Chao1 estimator; f1, the number of species
represented by exactly one individual (‘‘singletons’’); f2, the number of species represented by exactly two individuals
(‘‘doubletons’’); q0, the probability that the next individual sampled represents a previously undetected species, estimated as
f1/n; g, target fraction of Sest that is to be reached. The entries in each ‘‘g’’ column represent the number of additional individuals
needed to reach 100% (g ¼ 1), 95% (g¼ 0.95), and 90% (g ¼ 0.90), respectively, of Sest.

� For this case, g must be greater than 0.971 because of the restriction gSest . Sobs.

TABLE 2. Examples of estimated sampling effort for incidence-based data.

Habitat, taxon,
and locale t T Sobs Sest Q1 Q2 q0

g ¼
1

g ¼
0.95

g ¼
0.90 Source

Hedgerow carabid beetles in soil,
litter, and vegetation samples (UK)

16 72 20 22 4 5 0.0556 20 2 � Appendix A in Maudsley
et al. (2002)

Temperate forest ants in pitfall traps,
bait, litter, and hand collections (USA)

18 208 33 39 8 5 0.0385 62 16 6 Ellison et al. (2007)

Tropical rain forest tree seedlings
(Costa Rica)

121 461 34 36 3 2 0.0065 270 19 � Butler and Chazdon (1998)

Notes:Abbreviations are: t, number of samples collected; T, Rt
i¼1iQi¼ total number of incidences; Sobs, observed species richness;

Sest, estimated asymptotic species richness, based on the Chao2 estimator; Q1, the number of species represented by exactly one
sample (‘‘uniques’’); Q2, the number of species represented by exactly two samples (‘‘duplicates’’); q0, the probability that the next
observed sample contains a species new to the survey (i.e., the proportion of species in the next sample that are new to the survey),
estimated as Q1/T; g, target fraction of Sest that is to be reached. The entries in each ‘‘g’’ column represent the number of additional
samples needed to reach 100% (g ¼ 1), 95% (g¼ 0.95), and 90% (g ¼ 0.90), respectively, of Sest.

� For this case, g must be greater than 0.930 because of the restriction gSest . Sobs.
� For this case, g must be greater than 0.938 because of the restriction gSest . Sobs.

April 2009 1129SAMPLING FOR DIVERSITY ESTIMATORS



100% (g ¼ 1) and 95% (g ¼ 0.95) of Sest. Table 3 shows

the average results (over 1000 subsample runs) for
abundance data (Fisher’s Lepidoptera data set) for g¼ 1

and g ¼ 0.95. Table 4 shows the results for incidence

data, based on the BCI tree data set, for g ¼ 1 and g ¼
0.95, for 50 3 50 m quadrats. In Table 5, we compare

analyses based on both abundance data and the

corresponding incidence data for the BCI tree data set
(for g ¼ 1), for 25 3 25 m quadrats, in order to

investigate the sensitivity of our method to spatial

aggregation of individuals.

Ideally, we would compare the estimated additional

sample size (as calculated from our equations) with the
simulated sample size (which is obtained by continuing

our simulated process until we reach the target).

However, in some data sets, the estimate Sest may
exceed the observed number of species in the full data

set, so that the simulated size is not attainable (because

we can never reach a species richness higher than the full
observed species richness in the inventory or in the

census). Therefore, we used an alternative metric: the

achieved number of species (or equivalently, the

TABLE 3. Simulation results based on the Fisher et al. (1943) Lepidoptera abundance data set (15 609 individuals, 240 species).

n Sobs

g ¼ 1 g ¼ 0.95

Target Sest Estimated m Achieved Sest Achieved g Target gSest Estimated mg Achieved gSest Achieved g

750 119.3 165.6 5378 198.7 1.21 157.3 1415 161.1 0.98
1500 148.3 188.4 9236 214.6 1.15 179.0 2098 180.9 0.96
3000 175.4 209.4 16 593 227.4 1.09 199.0 3166 199.1 0.95
5000 193.8 222.3 24 888 233.4 1.05 211.1 3935 209.7 0.95
6000 199.7 225.4 28 017 234.9 1.04 214.1 3966 212.5 0.95
7000 204.4 227.7 30 980 235.9 1.04 216.3 3924 215.1 0.95
8000 208.6 229.8 33 266 236.6 1.03 218.3 3710 217.2 0.95

10 000 214.4 233.1 39 637 237.8 1.02 221.5 3681 220.5 0.95
15 000 223.7 237.6 51 914 238.9 1.01 225.7 2944 226.2 0.95
20 000 228.9 239.5 60 372 239.3 1.00 227.5 � � �
50 000 238.6 240.6 57 931 239.7 1.00 228.6 � � �
100 000 239.9 240.1 15 209 240 1.00 228.1 � � �
200 000 240.0 240.0 0 240 1.00 228.0 � � �
300 000 240.0 240.0 0 240 1.00 228.0 � � �

Notes: Each row represents the average of 1000 simulation runs. Abbreviations are: n, size of the random subsample; Sobs,
average number of species in the subsample; target Sest, average estimated number of species present in the assemblage, based on
the subsample; g, target fraction of Sest that is to be reached; estimated m, average estimated additional number of individuals
needed to be sampled to reach the target Sest; estimated mg, average estimated additional number of individuals needed to be
sampled to reach the target gSest (calculated from Eq. 12); achieved Sest, the average number of species obtained when additional
sampling effort is simulated; achieved g, achieved Sest/target Sest.

� In this case the average gSest , Sobs, so no simulation was performed for this subsample size.

TABLE 4. Simulation results based on 50-ha Barro Colorado Island (BCI), Panama, incidence data (Hubbell et al. 2005; 200 503
50 m quadrats, 238 018 individuals, 299 species).

t Sobs

g ¼ 1 g ¼ 0.95

Target Sest Estimated m Achieved Sest Achieved g Target gSest Estimated mg Achieved gSest Achieved g

5 191.2 219.2 25 248.8 1.14 208.2 3 208.7 0.95
7 204.1 230.7 33 256.4 1.11 219.2 4 219.3 0.95
10 216.8 241.5 46 264.3 1.10 229.5 5 229.3 0.95
20 238.1 262.5 102 280.0 1.07 249.4 11 248.4 0.95
40 256.7 279.3 206 290.3 1.04 265.4 19 264.4 0.95
60 266.7 287.1 291 294.0 1.03 272.8 23 272.1 0.95
80 272.8 290.7 358 295.5 1.02 276.1 22 276.6 0.95
100 277.9 294.1 423 296.7 1.01 279.4 21 280.6 0.95
200 289.5 298.8 625 298.2 1.00 283.9 � � �
300 293.9 299.4 687 298.4 1.00 284.4 � � �
500 297.3 299.7 750 298.5 1.00 284.8 � � �
1000 298.9 299.2 296 298.9 1.00 284.2 � � �
2000 299.0 299.0 4 299.0 1.00 284.1 � � �
3000 299.0 299.0 0 299.0 1.00 284.1 � � �

Notes: Each row represents the average of 1000 simulation runs. Abbreviations are: t, number of quadrats randomly selected;
Sobs, average number of species in the subsample; target Sest, average estimated number of species present in the assemblage, based
on the subsample; g, target fraction of Sest that is to be reached; estimated m, average estimated additional number of quadrats
needed to be sampled to reach the target Sest; estimated mg, average estimated additional number of quadrats (Eq. 15) needed to be
sampled to reach the target gSest; achieved Sest, the average number of species obtained when additional sampling effort is
simulated; achieved g ¼ achieved Sest/target Sest.

� In this case the average gSest , Sobs, so no simulation was performed for this subsample size.
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achieved g) when the estimated additional sampling has

been carried out in the simulation. Thus, if the estimator

is performing well, for any fixed value of g (including g¼
1), we should find the achieved species richness is very

close to our target gSest with an observed value of g very

close to the anticipated g value.

We found that, as subsample size is increased and

more information is collected, the estimated asymptotic

target gSest (including g ¼ 1) increases accordingly

(Tables 3, 4, and 5). Thus, the estimated additional

sampling effort needed to reach the target gSest initially

increases with subsample size. This result reflects a

general property of species accumulation curves: They

typically have initially steep slopes because common

species are quickly sampled, but their slopes decrease at

large sample sizes because much greater effort is needed

to sample the remaining rare species (Gotelli and

Colwell 2001). For the target of complete sampling (g

¼ 1), up to a critical point, as Sest is approaching the true

species richness, the estimated effort starts to decline and

eventually falls to 0. In all of our analyses, these critical

points correspond to very large subsample sizes,

implying that the search for rarest species requires

substantial effort. However, if the target is set to be 95%

of Sest (g ¼ 0.95), then the additional effort needed is

much less than the level required for complete sampling.

When subsample sizes are relatively small, our

estimates are conservative in the sense that the required

additional sampling effort is slightly overestimated, up

to a maximum of 20%, as shown for the smallest samples

in Tables 3, 4, and 5. When sample size is increased,

based on the achieved values of g in these tables, our

method is generally satisfactory because most values of g

are close to their nominal levels, especially for the case of

g¼ 0.95. Our method performed similarly well for both

abundance (Table 3) and incidence data (Table 4, and

the left half of Table 5).

For the BCI forest census, in which there is spatial

aggregation in the occurrence of some tree species (Table

4 and the left half of Table 5), our method was quite

robust to spatial aggregation if the data were analyzed

as incidences in quadrats.

Does our method work for nonrandom sampling? To

answer this question, we randomly drew quadrats from

the BCI data and then counted all individuals within the

selected quadrats. Because individual species occurrenc-

es are to some extent aggregated within a quadrat, the

sampled individuals are not statistically independent and

may not satisfy the assumption of random sampling.

TABLE 5. Simulation results of random quadrat selection based on 50-ha BCI incidence data (Hubbell et al. 2005; 800 253 25 m
quadrats, 238,018 individuals, 299 species).

t Sobs

g ¼ 1 (replicated incidence data) g ¼ 1 (abundance data, nonrandom sampling)

Target
Sest

Estimated m
(quadrats)

Achieved
Sest

Achieved
g

n
(individuals)

Target
Sest

Estimated m
(individuals)

Achieved
Sest

Achieved
g

5 137.8 175.5 30 216.4 1.24 1488 175.2 9338 222.3 1.28
7 152.3 189.9 41 225.8 1.20 2081 190.2 12526 231.2 1.22

25 205.2 235.2 128 257.1 1.10 7432 230.6 35723 258.9 1.13
50 228.1 253.7 249 271.8 1.07 14 878 250.2 71 685 273.6 1.10
100 247.4 272.1 539 285.4 1.05 29 771 268.2 150 624 285.4 1.07
150 257.4 280.4 785 290.0 1.04 44 638 277.3 221 801 290.2 1.05
200 264.5 285.5 997 292.6 1.03 59 479 282.4 281 031 292.8 1.04
300 273.4 291.1 1365 295.4 1.02 89 242 288.7 383 625 295.1 1.02
500 282.7 296.3 2004 297.4 1.00 148 766 294.1 535 595 297.1 1.01
1000 292.2 299.5 2778 298.3 1.00 297 493 298.6 747 673 298.2 1.00
2000 297.4 299.7 2901 298.5 1.00 595 100 299.6 879 848 298.5 1.00
4000 298.9 299.2 1173 298.9 1.00 1 190 146 299.2 417 107 298.9 1.00
8000 299.0 299.0 0 299.0 1.00 2 380 191 299.0 1368 299 1.00

10 000 299.0 299.0 0 299.0 1.00 2 974 992 299.0 0 299 1.00

Notes: Each row represents the average of 1000 simulation runs. In the data, t quadrats were randomly selected from the whole
area. Records in the selected quadrats were treated and analyzed either as replicated incidence data (left half of the table) or as the
underlying abundance data (right half of the table). Terms are as defined in Tables 3 and 4.

FIG. 1. Average of the observed, target, and achieved
number of species as a function of the number of 25 3 25 m
quadrats subsampled from the 50-ha Barro Colorado Island
(BCI), Panama, incidence data (Hubbell et al. 2005). ‘‘Ob-
served’’ is the mean observed species richness; ‘‘Target’’ is the
mean estimated species richness for a given number of quadrats;
and ‘‘Achieved’’ is the mean richness obtained when the
prescribed additional sampling effort is simulated. See Table 5
for details.
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However, the achieved g values performed adequately

and differ little from those based on incidence sampling

(Figs. 1 and 2).

DISCUSSION

Biodiversity sampling is an important, but labor-

intensive activity, and the sampling effort may have to

be increased several-fold in order to detect all of the rare

species in the tail of the rank abundance distribution, as

we have shown in the simulation study. The methods

presented here can provide guidance regarding how

much additional sampling would be minimally required

to detect all of the species (or a specified target

proportion) present in an area.

We applied our method to two ecological sampling

protocols: (1) Individuals are sampled independently

from the study community and abundance data are

recorded (abundance data); and (2) the community is

sampled multiple times and incidences are recorded

within each sample (replicated incidence data). For the

first protocol, our method has some degree of

robustness to the spatial aggregation of individuals

(Table 5 for BCI data). For the second protocol, our

method performed well with quadrat sampling (Tables

4 and 5).

Of course, spatial aggregation affects all species

diversity estimators and statistical inferences about

biodiversity patterns. In theory, if the functional form

of the aggregation were known (e.g., negative binomial),

our method could be modified to take this into account

(e.g., Kobayashi 1982, 1983, Smith et al. 1985), but in

practice the functional form cannot be reasonably

inferred. When strong aggregation is present, we suggest

that investigators should not sample individuals, but

instead should sample quadrats or other sampling units,

so that aggregation is no longer present at the larger

spatial scale. Then our methods for replicated incidence

data can be applied (Table 4 and the left half of Table 5).

Chazdon et al. (1998) showed a similar advantage of

incidence sampling for richness estimation when aggre-

gation is present.

If the goal is to detect all estimated species, it is

inevitable that the estimated effort required will often be

prohibitively large (the case of g ¼ 1 in all tables). We

suggest using a slightly smaller fraction (g ¼ 0.95) for

more realistic sampling objectives. An alternative

method is to establish a low target for q0 in Eq. 4, the

probability of finding a new additional species, and use

this as a guide for additional sampling. This alternative

criterion is based on a statistical optimal stopping rule

and has some good statistical properties (Rasmussen

and Starr 1979).

A limitation of this study is that our method assumes

sampling with replacement, because the asymptotic

species richness estimators (Chao1 and Chao 2), as well

as Turing’s frequency formulas were all derived from

such sampling schemes. However, for most quadrat

sampling in plant and animal surveys, quadrats/plots/

transects/traps are selected without replacement. We are

currently investigating modifications to our method for

sampling without replacement.
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APPENDIX

Statistical derivations (Ecological Archives E090-073-A1).

SUPPLEMENT

Excel-sheet calculator and calculator instructions (Ecological Archives E090-073-S1).
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