# Are Trends in Declining Atmospheric Deposition Reflected in Soil and Streams of the Hydrologic Benchmark Network?

Jason Siemion, Mike McHale, Douglas Burns, Greg Lawrence, and Mike Antidormi







#### Data Analysis Methods:

- Seasonal Kendall trend analysis for deposition (2000 to 2014) and stream chemistry (1995 to 2014)
- Soil samples (1999 and 2011) t-test or Mann-Whitney
- Subset of archived samples from 1999 re-analysed, 1999 data adjusted if archive re-analysis data was significantly different (paired t-test) from original data
- Data carbon normalized if significant differences in total carbon between the two time periods









- Neversink River -2.5 ueq/yr
- Young Womans Creek -2 ueq/yr
- Wild River -1 ueq/yr

### Trend Results for Deposition, Soil, and Streamwater Chemistry in the Neversink Watershed, 2001 to 2011

|              |                               |                         | H⁺                      | Al        | Ca <sup>2+</sup> | Mg <sup>2+</sup>        | ANC |
|--------------|-------------------------------|-------------------------|-------------------------|-----------|------------------|-------------------------|-----|
|              | SO <sub>4</sub> <sup>2-</sup> | $NO_3^-$                | or                      | or        | or               | or                      | or  |
|              |                               |                         | $H_{ex}$                | $Al_{ex}$ | Ca <sub>ex</sub> | $Mg_{ex}$               | BS  |
| Deposition   | $\downarrow \downarrow$       | $\downarrow \downarrow$ | $\downarrow \downarrow$ |           | ns               | ns                      |     |
| Soil A       |                               |                         | ns                      | ns        | ns               | ns                      | ns  |
| Horizon      |                               |                         | 113                     | 113       | 113              | 113                     | 113 |
| Soil upper B |                               |                         | $\uparrow \uparrow$     | ns        | ns               | ns                      | ns  |
| Horizon      |                               |                         | • •                     | 113       | 113              | 113                     | 113 |
| Stream       | $\downarrow \downarrow$       | ns                      | $\downarrow \downarrow$ |           | ns               | $\downarrow \downarrow$ | 个个  |
| water        | VV                            | -115                    | VV                      | VV        | 115              | VV                      | ' ' |

### Trend Results for Deposition, Soil, and Streamwater Chemistry in the Neversink Watershed, 2001 to 2011

|                         |                                    |                         | H⁺                               | Al                     | Ca <sup>2+</sup> | Mg <sup>2+</sup>        | ANC |
|-------------------------|------------------------------------|-------------------------|----------------------------------|------------------------|------------------|-------------------------|-----|
|                         | SO <sub>4</sub> <sup>2-</sup>      | $NO_3^-$                | or                               | or                     | or               | or                      | or  |
|                         |                                    |                         | $H_{ex}$                         | $Al_{ex}$              | Ca <sub>ex</sub> | $Mg_{ex}$               | BS  |
| Deposition              | $\downarrow \downarrow \downarrow$ | $\downarrow \downarrow$ | $\downarrow\downarrow\downarrow$ |                        | ns               | ns                      |     |
| Soil A<br>Horizon       |                                    |                         | ns                               | ns                     | ns               | ns                      | ns  |
| Soil upper B<br>Horizon |                                    | (                       | $\uparrow \uparrow$              | ns                     | ns               | ns                      | ns  |
| Stream<br>water         | $\downarrow\downarrow$             | ns                      | $\downarrow \downarrow$          | $\downarrow\downarrow$ | ns               | $\downarrow \downarrow$ | 个个  |

#### Trend Results for Deposition, Soil, and Streamwater Chemistry in the Young Womans Creek Watershed, 1999 to 2011

|                         |                               |                        | H⁺                     | Al                      | Ca <sup>2+</sup> | Mg <sup>2+</sup>        | ANC |
|-------------------------|-------------------------------|------------------------|------------------------|-------------------------|------------------|-------------------------|-----|
|                         | SO <sub>4</sub> <sup>2-</sup> | $NO_3^-$               | or                     | or                      | or               | or                      | or  |
|                         |                               |                        | $H_{ex}$               | $Al_{ex}$               | Ca <sub>ex</sub> | $Mg_{ex}$               | BS  |
| Deposition              | $\downarrow \downarrow$       | $\downarrow\downarrow$ | $\downarrow\downarrow$ |                         | ns               | ns                      |     |
| Soil A<br>Horizon       |                               |                        | ns                     | $\downarrow \downarrow$ | ns               | ns                      | ns  |
| Soil upper<br>B Horizon |                               |                        | $\uparrow \uparrow$    | ns                      | ns               | ns                      | ns  |
| Stream<br>water         | $\downarrow \downarrow$       | ns                     | ns                     |                         | ns               | $\downarrow \downarrow$ | 个个  |

#### Trend Results for Deposition, Soil, and Streamwater Chemistry in the Young Womans Creek Watershed, 1999 to 2011

|                         |                                 |                        | H <sup>+</sup>         | Al                              | Ca <sup>2+</sup> | Mg <sup>2+</sup>        | ANC       |
|-------------------------|---------------------------------|------------------------|------------------------|---------------------------------|------------------|-------------------------|-----------|
|                         | SO <sub>4</sub> <sup>2-</sup>   | $NO_3^-$               | or                     | or                              | or               | or                      | or        |
|                         |                                 |                        | $H_{ex}$               | $Al_{ex}$                       | Ca <sub>ex</sub> | $Mg_{ex}$               | BS        |
| Deposition              | $\boxed{\downarrow \downarrow}$ | $\downarrow\downarrow$ | $\downarrow\downarrow$ |                                 | ns               | ns                      |           |
| Soil A<br>Horizon       |                                 |                        | ns (                   | $\boxed{\downarrow \downarrow}$ | ns               | ns                      | ns        |
| Soil upper<br>B Horizon |                                 | (                      | $\uparrow \uparrow$    | ns                              | ns               | ns                      | ns        |
| Stream<br>water         | $\sqrt{\downarrow}$             | ns                     | ns                     |                                 | ns               | $\downarrow \downarrow$ | <b>个个</b> |

## Trend Results for Deposition, Soil, and Streamwater Chemistry in the Wild River Watershed, 1999 to 2011

|                         |                               |                        | H⁺                               | Al                  | Ca <sup>2+</sup> | Mg <sup>2+</sup> | ANC                     |
|-------------------------|-------------------------------|------------------------|----------------------------------|---------------------|------------------|------------------|-------------------------|
|                         | SO <sub>4</sub> <sup>2-</sup> | $NO_3^-$               | or                               | or                  | or               | or               | or                      |
|                         |                               |                        | $H_{ex}$                         | $Al_{ex}$           | Ca <sub>ex</sub> | $Mg_{ex}$        | BS                      |
| Deposition              | $\downarrow \downarrow$       | $\downarrow\downarrow$ | $\downarrow\downarrow\downarrow$ |                     | ns               | ns               |                         |
| Soil Oa<br>Horizon      |                               |                        | $\uparrow \uparrow$              | $\uparrow \uparrow$ | ns               | ns               | $\downarrow \downarrow$ |
| Soil upper<br>B Horizon |                               |                        | $\uparrow \uparrow$              | 个个                  | $\downarrow$     | ns               | $\downarrow \downarrow$ |
| Stream<br>water         | $\downarrow \downarrow$       | ns                     | ns                               | ns                  | ns               | ns               | ns                      |

#### Trend Results for Deposition, Soil, and Streamwater Chemistry in the Wild River Watershed, 1999 to 2011



# Disconnect between deposition, soil, and stream recovery.

Young Womans Creek and Neversink River greater deposition, but more recovery than Wild River.

Why?





### Differences in Site Characteristics: Bedrock Geology

- Pockets of sparse, local "base rich" sedimentary bedrock deposits (<10% carbonate) in Neversink (Ver Straeten, 2013) and Young Womans (Colton and Stanley, 1965)
- More evidence of this in the Neversink than Young Womans
- Metamorphic bedrock in Wild River (gneiss, schists, and quartzites)

# Sparse "Base Rich" Bedrock Sources in the Neversink River watershed:

- Evidence of shallow and deep ground water sources to streams (Burns et al 1998)
- Groundwater in contact with "base rich" bedrock



#### Differences in Site Characteristics: Forest Type

 Neversink...northern hardwoods, spruce-fir on ridge tops

 Young Womans...Oak-Hickory and northern hardwoods

 Wild River...northern hardwoods, more spruce-fir at high elevations and ridge tops



#### Summary

- Disconnect between deposition, soils and streams
- Significant declines in deposition
- Little to no recovery in soil chemistry
- Evidence of stream recovery, but not uniform...differences in site characteristics
- Limited role of soils in stream recovery