


Global Change Context

« Temperate forests are important C reservoirs
o WIll they be sources or sinks in a changing climate?
o What is the range of possible change in soil C pools?
o (Economic value/cost of C sequestration/loss)

* Land-use Impacts on C cycling
o Temperate forests lie in many heavily industrialized regions
o Historically impacted by acidic deposition
o Now recovering in many regions (esp. Europe, N. Americaq)
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Characteristics of Monitored Watersheds

Watershed Size Year

Number (ha) Started Treatment

1 11.8 1956 Calcium silicate addition 1999

2 15.6 1957 Clear-felled in ‘65-66, no products removed, herbicide
application ‘66,67, 68.

3 424 1958 None — Hydrologic reference.

4 36.1 1961 Clear-cut by strips in three phases — “70,72,74. Timber
products removed.

5 21.9 1962 Whole-tree clear-cut in 1983-84. Timber products
removed.

6 13.2 1963 None - Biogeochemical reference.

7 76.4 1965 None

8 59.4 1969 None

9 68.0 1994 None

101 12.1 1970 Clear-cut as block in 1970. Timber products removed.







“Facilitated Recovery” - Wollastonite
Addition: W1, October 1999




Motivation and Hypotheses
« Wollastonite = CaSiO;

« “Replace” Ca depleted from saoils by:
« Acid rain
« Successional vegetation growth

« Soil Hypotheses:

1. Wollastonite application will result in increased pH,
exchangeable Ca and base saturation in W1 soils.

2.  Soil chemical change will occur over many years, as d
chemical “front” moving downward in the soil.

3. Wollastonite treatment will result in faster rates of C and N
cycling processes due to a more favorable environment
for microbes.

 Decline in soil organic matter, SOC?¢




Does Ca Addition Cause SOM Loss?
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Does Ca Addition Cause SOM Loss?
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It does not appear to be a sampling issue.



Does Ca Addition Cause SOM Loss?
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Possibilities

« Enhanced decompositione

o Groffman et al. (2007) saw little effect on microbial
processes in W1...

o ...but Lovett et al. (2016) observed greater late-stage
decomposition in litter.
« Greater C dllocation to shoots = less roof littere
o Fahey et al. (CJFR in Press) have documented lower fine-
root biomass in the tfreated watershed.

« Higher OM solubility at higher pH? [There has been
little or no change in soil solution DOC.]

* Mixing?¢ [No earthworms at Hubbard Brook, but we
have started to see them in W1 ]



Soil Nitrogen Declines in W1
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W1 Soil Nitrogen ‘Loss’ is Substantial
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Soil C and N in Limed Forest Ecosystems

Ecological Applications, 23(8), 2013, pp. 1962-1975
© 2013 by the Ecological Society of America

Forest liming increases forest floor carbon and nitrogen stocks
in a mixed hardwood forest

ApriL M. MeLvin, ' Jeremy W. LicusTeN,” AND CHRISTINE L. GOODALE'

'Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853 USA
2Department of Biology, University of Florida, Gainesville, Florida 32611 USA
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Fii. 2. Cumulative forest floor (A) carbon and (B) nitrogen stocks (mean *= SE) in control (C1 and C2) and limed (L1 and L2)
subcatchments. The forest floor Oe horizon is displayed in white, and Oa in gray. Different letters indicate significant differences (P
<< 0.05) among subcatchments, and lime effect indicates the overall response to liming.



Contrasting Responses to Ca Addition

Oa Horizon
15
(@) W1
1 | —@— Woods Lake

& .
= : -
210 1 ///
bl ] e
9 ] T
= -
= ] ///
o 1 - i
S5 & $__
> ] & —~—_ 5
@) . ~—5

o4

1985 1990 1995 2000 2005 2010

2015

-2

Nitrogen (g m™)

Oa Horizon
300 -
] e Wi
250 1 —@— Woods Lake +
] g
7~
7~
200 #°
7~
7~
] 2
150 + P
] // ié
100 + ? \§\\
] T2
50 } 2
[ N SR TN T SN S—
1985 1990 1995 2000 2005 2010 2015

Woods Lake Data: Melvin et al. (2013)



Observed Trends in Forest Floor C and N

Forest Floor C (Mg/ha)

W Total forest floor

50
OOie only
40
30 A
20
O
0 " O
10
0] ‘
1975 1980 1985 1990 1995 2000 2005 2010 2015

Forest Floor N (kg/ha)

SERENE

1000

o
o
o

mTotal forest floor
O Qie only

0
1975 1980 1985 1990 1995 2000 2005

2010 2015

C:N (whole watershed by mass)

—l
O
—l—

mTotal forest floor
0O0Qie only

1975 1980 1985 1990 1995 2000 2005

2010 2015




Trends in Forest Floor N in W1, W6

Oi+Oe Horizon Nitrogen

150 1
125
'E100‘_‘ 'E
g 2
S S
= 50 7 Z
25 + | e we
1| —e— w1
Bt
1995 2000 2005 2010 2015

Oa Horizon Nitrogen

150 1

=

(&)} ~ o

o (&) o
L1 i |

N
(&)
N B

125

-

1995

2000 2005 2010 2015

W6 Data: Vadeboncoeur, Hamburg (unpublished)



Soil C, N in Recovering Forest Ecosystems

3120 F. OULEHLE et al.
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Global Change Biology (2011) 17, 3115-3129, doi: 10.1111/}.1365-2486.2011.02468.x

Major changes in forest carbon and nitrogen cycling
caused by declining sulphur deposition

FILIP OULEHLE*f, CHRISTOPHER D. EVANS*, JENYK HOFMEISTERf, RADOVAN
KREJCI§, KAROLINA TAHOVSKAY, TRYGGVE PERSSON |, PAVEL CUDLIN**
and JAKUB HRUSK A
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Fig. 4 Temporal change of the organic soil pool (a), carbon pool
(b) and nitrogen pool (c) in the Oi + Oe (white) and Oa horizons
(grey). Different letters indicate statistically different values
(P < 0.05) in the Oa horizon. Mean values £ SD.

Large decline in SOC during
recovery from chronic acidification.
As at Hubbard Brook, loss is largely
from the Oa horizon (gray bars).



Soil N in Recovering Forest Ecosystems
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Conclusions

1. Data from temperate forests recovering from chronic
acidification, including Hubbard Brook, suggest that:

a. Acidification may have resulted in the accumulation of SOM in
temperate forests;

b. Soils may be C (and N) sources during recovery from historic
acidification.

2. Calcium addition has resulted in large losses of soil organic
matter (and carbon) from the humus layer. This contrasts with
a long-term liming study conducted at a similar site.

3. Recovery from acid rain may confound long-term studies of
climate change effects (including soil warming studies) on soll
C dynamics.



