Establishing a Soil Chemical Baseline for the Catskills

Chris E. Johnson & Charles T. Driscoll
Dept. of Civil & Environmental Engineering
Syracuse University

New Project – April 2010

- How is soil chemical change linked to stream and lake responses to acidic deposition?
- Are existing soil chemical data sufficient to adequately track future soil change?
- Have applications of Ca to soils been effective in increasing the long-term base status of forest soils and drainage waters?
- which Ca mitigation strategies hold the most promise for accelerating the chemical recovery of soils and surface waters in the Adirondacks?

Proposed Field and Laboratory Work

- □ Chemical analysis of mineral soil samples collected at 130 sites in NE USA in 2001-02, comparison with 1984 data.
- Monthly sampling and analysis of 12 (or more) Catskills stream sites selected from sites in Lovett et al. (2000) study.
- Bi-monthly sampling and analysis of inlet streams to six Adirondack lakes.
- Soil sampling and analysis from experimentally manipulated sites in the Adirondacks.
- Soil sampling and analysis from 25 Catskills watersheds to establish a soil monitoring baseline for future studies

Proposed Field and Laboratory Work

- □ Chemical analysis of mineral soil samples collected at 130 sites in NE USA in 2001-02, comparison with 1984 data. Completed.
- Monthly sampling and analysis of 12 (or more) Catskills stream sites selected from sites in Lovett et al. (2000) study.
- Bi-monthly sampling and analysis of inlet streams to six Adirondack lakes.
- Soil sampling and analysis from experimentally manipulated sites in the Adirondacks.
- Soil sampling and analysis from 25 Catskills watersheds to establish a soil monitoring baseline for future studies

- Proposed Field and Laboratory Work
 - □ Chemical analysis of mineral soil samples collected at 130 sites in NE USA in 2001-02, comparison with 1984 data. Completed.
 - Monthly sampling and analysis of 12 (or more) Catskills stream sites selected from sites in Lovett et al. (2000) study. Underway (06/10)
 - Bi-monthly sampling and analysis of inlet streams to six Adirondack lakes.
 - Soil sampling and analysis from experimentally manipulated sites in the Adirondacks.
 - Soil sampling and analysis from 25 Catskills watersheds to establish a soil monitoring baseline for future studies

- Proposed Field and Laboratory Work
 - □ Chemical analysis of mineral soil samples collected at 130 sites in NE USA in 2001-02, comparison with 1984 data. Completed.
 - Monthly sampling and analysis of 12 (or more) Catskills stream sites selected from sites in Lovett et al. (2000) study. Underway (06/10)
 - Bi-monthly sampling and analysis of inlet streams to six Adirondack lakes. Ready to begin
 - Soil sampling and analysis from experimentally manipulated sites in the Adirondacks. Ready to begin
 - Soil sampling and analysis from 25 Catskills watersheds to establish a soil monitoring baseline for future studies.

- Proposed Field and Laboratory Work
 - □ Chemical analysis of mineral soil samples collected at 130 sites in NE USA in 2001-02, comparison with 1984 data. Completed.
 - Monthly sampling and analysis of 12 (or more) Catskills stream sites selected from sites in Lovett et al. (2000) study. Underway (06/10)
 - Bi-monthly sampling and analysis of inlet streams to six Adirondack lakes. Ready to begin
 - Soil sampling and analysis from experimentally manipulated sites in the Adirondacks. Ready to begin
 - Soil sampling and analysis from 25 Catskills watersheds to establish a soil monitoring baseline for future studies. Summer, 2011, pending approval by NYS DEC

Catskills Study Watersheds

Goals of Soil Sampling

- 1. Establish a baseline for future monitoring.
- 2. Provide data for biogeochemical modeling.
 - ≈ 50 pits [25 watersheds x 2 pits]
 - > Sample sites that actually have soil (!)
 - Sample range of forest types
 - > State land low probability of land-use change

Site Locations

- In each watershed:
 - One site near stream sampling location.
 - One site at elevation approximately half-way between stream sampling site and watershed crest.

Methods

- Quantitative soil pits
 - Direct measurement of soil mass (kg m⁻²)
 - Calculate soil chemical pools
 - Oi+Oe, Oa
 - Mineral soil by depth increment: 0-5 cm, 5-10, 10-20, 20-C

Analysis and Storage

- Analytes:
 - Total C, N (Combustion/GC)
 - Soil pH
 - Exchangeable Al, Ca, Mg, K, Na (NH₄Cl extraction)
 - Exchangeable Acidity (KCl extraction)
 - Cation Exchange Capacity
- Archiving Options?

Stream Sulfate Concentrations

Stream Calcium Concentrations

