
The ubiquity of microorganisms in Earth’s near-surface 
environments has spurred a worldwide scientific effort 
to classify and understand microbial communities at the 
molecular level. Systems of interest include the human 
body1, soils and the plant rhizosphere2, the ocean3,4, 
communities of biotechnological interest5,6 and extreme 
environments, such as acid mine drainage (AMD)7 and 
hydrothermal systems8. Because many microorganisms 
(estimates vary between 80–99%) cannot yet be cultured, 
and given that isolated strains might behave differently 
in culture than in their natural environments, there has 
been considerable interest in developing cultivation-
independent methods to study microbial communities. 
Molecular fingerprinting techniques (for example, based 
on ribosomal RNA gene sequences) that were estab-
lished in the 1980s to characterize community mem-
bership9,10 have led to methods that focus on functional 
gene content and expression levels in microbial isolates 
and communities.

High-throughput molecular biology techniques, such 
as genome sequencing, have been key to the current ren-
aissance in microbial ecology and physiology. The ability 
to sequence and annotate whole genomes of organisms, 
ranging from viruses to mammals, is well established 
— hundreds of microbial genome sequences have been 
completed and hundreds more are being characterized at 
a rapid pace (see the Integrated Microbial Genomes with 
Microbiome Samples website). This sequence informa-
tion has enabled the analysis of the protein complements 
(proteomes) of organisms and consortia.

Here we describe the adaptation of isolate-based 
proteomics methods to study genomically uncharac-
terized or incompletely characterized natural consortia 
and review early progress. The approach simultaneously 
yields information about which members are active in a 
community, its detailed genetic composition and the bio-
chemical pathways and mechanisms that are necessary  
for a community’s survival. 

The emerging fields of ‘omics’ technologies have 
spawned many new terms and acronyms. The terms 
metaproteomics, microbial community proteomics and 
microbial community proteogenomics are sometimes 
interchangeably used for different types of experi-
ments and results. We would like to suggest some 
clarifications to these terms. In our view, metapro-
teomics should be used to classify experimental sys-
tems and results that are sufficiently complex that the 
genes and proteins that are identified from these com-
munities cannot be binned into species or organism 
types. The metaproteomics approach is comparable 
to gene-centric environmental genomics, or metage-
nomics, approaches. This might be most obvious for 
complex systems, such as the soil or human micro-
biomes. Although genes and proteins can clearly be 
identified from such systems to moderate depths 
with current technologies, it is virtually impossi-
ble to confidently assign a large percentage of these 
identifications to a specific species or organism type. 
Thus, the experimental results provide a global view 
of the metabolic activity of the community, but cannot 
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Consortia 
A coexisting group of microbial 
populations.

Metaproteomics
The term metaproteomics is 
preferred for more partial, 
gene-centric approaches to 
community analysis.

Community proteomics
Application of proteomics 
beyond single isolate studies 
aimed at comprehensive 
system analysis. 
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Abstract | We know very little about the metabolic functioning and evolutionary dynamics of 
microbial communities. Recent advances in comprehensive, sequencing-based methods, 
however, are laying a molecular foundation for new insights into how microbial communities 
shape the Earth’s biosphere. Here we explore the convergence of microbial ecology, 
genomics, biological mass spectrometry and informatics that form the new field of microbial 
community proteogenomics. We discuss the first applications of proteogenomics and its 
potential for studying the physiology, ecology and evolution of microbial populations and 
communities.
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Community proteogenomics 
A dynamic interplay between 
community genomics and 
community proteomics, where 
the genomic makeup of the 
populations is inferred from 
the proteomics data, allowing 
for evolutionary analyses as 
well as for a valid interpretation 
of proteomics data from 
genomically uncharacterized 
samples.

Mass spectrometry-based 
proteomics
The application of mass 
spectrometry to proteome 
measurements.

Tandem mass spectrometry
The isolation, activation and 
fragmentation of peptides in 
mass spectrometers to obtain 
primary sequence information 
about the peptides.

properly delineate which members of a community are 
performing which metabolic functions. By contrast, 
genomics and proteomics of less diverse communities, 
such as the AMD system, can enable comprehensive 
analysis of defined populations. 

The terms community proteomics and community 
genomics should be used to describe experiments in 
which most identified proteins can be mapped back onto 
the genomic context of individual species in the commu-
nity, so the metabolic function of the members of the com-
munity can be ascertained. community proteogenomics 
is a natural extension of community proteomics, going 
beyond the simple cataloguing of expressed proteins. 
Proteogenomics methods attempt to infer genomic infor-
mation using candidate peptide sequences from genomic 
databases. Initially defined as a method to improve gene 
annotation, we here extend the term to include assessment 
of which strain variants or species are present in a sample 
and how the genomic makeup of a population changes 
over time. This aspect is crucial to a valid interpretation 
of community proteomic data, and as such we argue there 
can be no community proteomics without making these 
genomic inferences.

microbial proteomics
Proteomics analyses comprise a suite of methodologies. 
In addition to protein cataloguing (determining the pro-
teins present in a cell under given growth condition), 
proteomics can be used to evaluate how different growth 
states (as a function of time points or environmental set-
tings) affect protein expression and determine protein 
localization, and to discover post-translational modifi-
cations (PTMs) and infer protein–protein interactions, 
amino-acid sequences and genotypes.

Proteomics is developing rapidly and cannot be 
defined by a single measurement platform, experi-
mental approach or application. The first proteomics 
experiments were made possible by the invention of 
two-dimensional polyacrylamide gel electrophoresis 
(2D-PAGE)11,12 over 30 years ago, but were limited by a 
lack of methods to identify the proteins that were con-
tained in the observed spots. Simultaneously, devel-
opments in a seemingly completely unrelated field of 

mass spectrometry (MS) in the 1980s and 1990s ush-
ered in the development of a new approach —MS-based 
proteomics (TiMeline). 

Microbial proteomics currently makes use of both 
gel-based (one dimensional and 2D)13 and gel-independ-
ent liquid chromatography (lc)-based separations, each 
relying on MS-based peptide identification. In gel-based 
approaches the intact proteins are separated before an in-
gel enzymatic digestion is performed to generate proteo-
lytic peptides, whereas typical lc–tandem MS (MS/MS) 
methods are not carried out on intact proteins. Instead 
proteolytic peptides that have been separated from the 
complex sample are analysed — these approaches are 
commonly referred to as ‘shotgun’ or ‘bottom-up’ pro-
teomics14–17. There are also lc–MS/MS approaches 
based on intact protein interrogation (termed ‘top-
down’); these in general do not provide the same depth 
of proteome coverage but can provide unique informa-
tion about the molecular form of proteins, especially 
post-translational modifications18. The typical shotgun 
proteomics experiment involves three stages: sample 
preparation, lc–MS analyses and proteome informat-
ics. Appropriate applications at all three stages are crucial 
for obtaining an overall quality proteome sampling, and 
these steps have been reviewed in detail14–17.

Sample preparation generally begins with cellular lysis 
via sonication, French press or bead beating. To achieve 
comprehensive protein measurement, whole proteomes 
can be physically fractionated into cytoplasmic, mem-
brane and extracellular samples through centrifugation 
techniques (if adequate biomass is available). Proteins are 
then denatured and reduced (to facilitate their effective 
proteolysis) and digested into peptides, usually with a  
highly specific protease (such as trypsin), although  
non-specific proteases are used for certain applications. 

To reduce the complexity of the peptide mixture 
that enters the mass spectrometer simultaneously, a 
2D lc-based separation is generally performed by 
combining strong cation exchange (based on charge) 
and reverse phase (based on hydrophobicity) col-
umns19,20. After lc separation, charged peptides are 
transferred into the gas phase for MS measurements, 
either by electrospray ionization21 for solution phase 

 
Timeline | evolution of mass spectrometry-based proteomics from microbial isolates to communities

1974 1986 1989 1990 1994 1996 2001 2004 2005 2007

Protein sequencing 
via tandem mass 
spectrometry (MS/
MS)25,26.

Two-dimensional 
polyacrylamide gel 
electrophoresis 
(2D-PAGE) 
developed11.

Electrospray 
ionization21.

SEQUEST algorithm 
correlates protein 
sequences from a database 
with MS/MS spectra28.

Large-scale 
identification of yeast 
proteins via 2D-liquid 
chromatography–MS/
MS20.

First large-scale 
proteome 
obtained 
directly from the 
environment53. 

Matrix-assisted 
laser desorption/
ionization22,23.

Large-scale 
identification of yeast 
proteins via 
2D-PAGE–MS13.

First reconstruction  
of genomes of 
uncultivated organisms 
from a natural 
environment49.

The first study to show 
you can infer sequence 
types from 
strain-resolved 
proteomic data59.
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Proteome bioinformatics
A subdiscipline in proteomics 
that is concerned with all 
methods of data analyses, 
validation, comparisons, 
statistics, dissemination and 
archival.

samples, or deposited onto surfaces and mixed with 
a solid matrix, for analyses via matrix-assisted laser 
desorption/ionization (MAlDI)22,23. Peptide and pro-
tein identification using MS methods became pos-
sible with the development of rapid scanning mass 
spectrometers capable of MS/MS measurements (also 
known as collision induced dissociation (cID)24–27 on 
lc timescales.

Key to peptide and protein identification is the 
comparison of the measured intact masses and frag-
mentation patterns of the peptides with predicted 
intact masses and fragmentation patterns, which are 
generated in silico from genomic sequence data (FiG. 1). 
comparisons make use of database search algorithms 
such as SEQuEST28, MAScoT29 and X-tandem30. 
Because lc–MS/MS-based identification of the pep-
tides is so intimately tied to computational predictions, 
an entire field of proteome bioinformatics has emerged 
to tackle the flood of data that is created in typical 
proteomics studies. 

The analysis of whole proteomes and protein com-
plexes by MS can provide useful qualitative informa-
tion, but the importance of accurate quantitative data 
for comparative analysis between temporally or spa-
tially resolved samples cannot be overstated. Due to 
non-uniform ion ization of peptides and/or increased 
loss of some peptides types (for example, hydropho-
bic peptides adhere to surfaces), direct quantifica-
tion of shotgun proteomic data is challenging31. This 
can partially be addressed by stable isotope label-
ling, which enables quantification of the abundance 
of labelled protein in one growth condition relative 
to the abundance of unlabelled protein from another 
condition (for example, Escherichia coli grown in 
high salt versus low salt solutions). 

label-free methods represent an alternative approach 
for proteome quantification. These methods exploit 
intrinsic MS measurement metrics from unlabelled sam-
ples, such as peak intensities/areas of peptides32, spectral 
counts33 and normalized spectral abundance factors34, 
to quantify peptides and proteins. They have grown in 
popularity due to their simplicity, low cost and appli-
cability on any sample. Much effort is directed towards 
developing better tools and statistics for label-free  
methods35–37.

The rapid advancements of multidimensional liquid-
based separations coupled to rapid scanning MS/MS has 
enabled in-depth, accurate and quantitative studies of 
whole microbial proteomes20,38–41. The new generation  
of fast-scanning mass spectrometers42,43 can identify 
several thousand proteins from a single growth state of 
a microbial isolate in 1–2 days44–48. With isolates grown 
under different metabolic conditions, it is possible to 
quantitatively compare thousands of proteins from the 
different conditions44–48. By analysing a microbial isolate in 
multiple growth states, between 50–90% of the predicted  
proteome can be identified.

Proteomics of microbial communities 
Initial attempts to characterize the proteins that are 
expressed in microbial communities were ham-
pered both by the limited resolution of 2D gel elec-
trophoresis and by the lack of genomic information 
upon which to base peptide and protein identification 
(TABle 1). The availability of the appropriate genomic 
sequence data was therefore key to the transition 
from isolate to community proteomics. In 2004, the 
genomes of co-existing members of an AMD bio-
film community49 and extensive genomic sampling 
of microorganisms in the Sargasso Sea50 were pub-
lished. A myriad of natural communities have now 
been sequenced. The resulting vast dataset is grow-
ing through the addition of genome sequences from 
individual microbial cells that, in some cases, were 
isolated from other more abundant community  
members51.

An AMD biofilm was the first ecosystem for which 
genomic sequence information was available for the 
dominant species in the population (BOX 1a, top line). 
These chemoautotrophically-based biofilms grow 
underground in the Richmond Mine, california. As a 
consequence of their independence from other ecosys-
tems, they represent a natural model system for commu-
nity ecological studies. An intrinsic feature of the AMD 
biofilms is that they are dominated by only a handful 
of taxa. Genomes of the five dominant organisms were 
reconstructed using a modest sequencing allocation 
(initially 76 megabases49). Despite using a low energy 
resource (aerobic iron oxidation), microbial commu-
nity growth is so prolific and abundant that discrete 
biofilms that grow at the air–solution interface can be 
sampled. These features made AMD biofilms an ideal 
system for development of cultivation-independent  
methods for the study of natural microbial commu-
nities and an obvious choice for the first community  
proteomics experiments.

Figure 1 | liquid chromatography–mass spectrometry-based proteomics.  
A protein mixture is enzymatically digested (for example, using trypsin) and the resulting 
peptide mixture is separated by multidimensional liquid chromatography (LC). Peptides 
are then assessed using mass spectrometry (MS) and then isolated and fragmented to 
obtain sequence information, by tandem MS (MS/MS). Spectra that are generated by MS 
are computationally matched to theoretical spectra generated from an in silico digest of 
a protein-sequence database, which itself is derived from the annotation of genomic 
sequence data.
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The first large-scale proteomics experiment, aimed 
at obtaining a system-level snapshot of the protein-
abundance levels, targeted an AMD biofilm for which 
no community genomic data were available52. Instead, 
peptide and protein identification (BOX 1a, bottom line) 
relied on the genomic sequence for a biofilm from the 
same system with similar microbial membership49. 
Despite differences between the sequences of predicted 
proteins in the dataset and those in the actual sample, 
it was possible to match shotgun MS/MS spectra to 
peptides and thus identify over 2,000 proteins from the  
5 abundant populations (TABle 1). Fifty percent of  
the proteome of Leptospirillum group II, the most abundant  
organism in the sample, was identified. The experiment 
confirmed the existence of 570 hypothetical proteins, 

suggested distinct functions for different organisms in 
the community and revealed genomic regions that show 
heterogeneous protein expression (for example, associ-
ated with integrated plasmid and phage). It was possible 
to directly map information about Leptospirillum group 
II protein localization (for example, based on detection 
of proteins in the extracellular or membrane fraction) 
and inferred abundance back into the genomic con-
text (BOX 1). By combining abundance, localization and 
genomic context information, it was possible to formu-
late hypotheses regarding the function of some proteins 
of unknown function. Some highly abundant proteins of 
unknown function were targeted for detailed biochemi-
cal studies. Subsequent analysis revealed that two of these 
are cytochromes that are involved in iron oxidation (the 

Table 1 | overview of meta- and community proteomic studies

Microbiome Number of 
peptides/
proteins 
identified*

Protein/peptide 
separation method

MS platform Peptide 
identification 
method

ref.

Ocean 184/NA‡ 2D-PAGE, 2D nano-LC LCQ, MS/MS Spectral 
matching, de novo

76

Acid mine 
drainage 

6,188§/2,033 (2p) 
6,931§/5,090 (1p)

2D nano-LC LTQ MS/MS Spectral matching 52

Lake and soil NA/513 (1p)|| 2D nano-LC Q-ToF, MS/MS Spectral matching 65

Estuary 7/3 (2p) 2D-PAGE + LC Q-ToF, MS/MS De novo 77

Ocean 3/1 (2p)¶ 1D-PAGE MALDI-ToF, MS Spectral matching 62

Riftia symbionts NA/220 (2p)¶ 2D-PAGE, 1D-PAGE +  
2D nano-LC

MALDI-ToF MS, 
Q-ToF MS/MS

Spectral matching 78

Infant 
gastrointestinal 
tract

11/1 (1p) 2D-PAGE MALDI-ToF MS De novo 79

Acid mine 
drainage

8,137§/3,234 (2p) 2D nano-LC LTQ MS/MS Spectral matching 59

Waste water 
treatment 
reactor

NA/109 (2p)¶ 2D-PAGE MALDI-ToF, MS/
MS

Spectral 
matching, de novo

80

Contaminated 
soil/groundwater

NA/59 (1p)¶ 1D + 2D-PAGE + LC MS/MS Spectral matching 66

Sludge NA/46 (2p)¶ 2D-PAGE MALDI-ToF MS, 
Q-ToF MS/MS

Spectral matching 56

Sludge 4,472#/2,378 (2p) 2D nano-LC LTQ MS/MS, 
Orbitrap, MS/MS

Spectral matching 57

Sludge EPS 50/10 (1p)¶ 1D-PAGE + LC 4000Qtrap, MS/
MS

Spectral matching 81

Ocean 6,533/1,042 
(1p-2p)

2D nano-LC LTQ MS/MS Spectral matching 63

Acid mine 
drainage

NA/2,752** (2p) 2D nano-LC Orbitrap, MS/MS Spectral matching 60

Gut NA/2,214 (2p) 2D nano-LC Orbitrap, MS/MS Spectral matching 64

*1p/2p filter indicates the need for at least one or two peptides to be identified to deem the corresponding protein identified. 
‡Data was presented as matching membrane proteins or matching enzymes, with only specific matches given for four proteins. 
§Average number of peptides per MS/MS run. The complete experiment leading to the identification of the number of unique 
proteins included 13 MS/MS runs. ||30% of the identified proteins were identified based on only one peptide. Number of proteins is 
cumulative over seven soil samples and one lake sample and might be partially redundant. ¶For MASCOT-based searches, other 
filters in addition to number of peptides were applied. #Average number of peptides per MS/MS run. The complete experiment 
leading to the identification of the number of unique proteins included four MS/MS runs. LTQ data are presented. **Average 
number of proteins identified in 27 samples, for each of which 3 MS/MS runs were performed. 2D-PAGE, two-dimensional 
polyacrylamide gel electrophoresis; EPS, extracellular polymeric substances; LC, liquid chromatography; LCQ, quadrupole ion 
trap; LTQ, linear ion trap; MALDI-ToF, matrix-assisted laser desorption/ionization-time of flight; MS, mass spectrometry; MS/MS, 
tandem MS; Q-ToF, quadrupole-time of flight.
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function that underpins the role of bacteria and archaea 
in driving AMD production). Both cytochromes were 
directly purified from natural AMD biofilms. cyt572 was 
shown to be an unusual membrane-bound cytochrome53 
and cyt579 was shown to be a soluble extracellular pro-
tein that transfers electrons that are derived from Fe(II) 
oxidation54.

currently, more than 30 proteomic datasets have 
been generated from samples taken in this AMD sys-
tem. Together with species-abundance measurements 
made by FISH (fluorescent in situ hybridization) of 
ribosomal RNA probes, these data allow us to deter-
mine the relationship between species abundance and 
proteomics identification efficiency (FiG. 2). Saturation of 
the number of proteins identified, as well as the average 
protein coverage (percent of protein covered by identi-
fied peptides), emerges once the target organism consti-
tutes more than 30–40% of the community. Below this 
threshold, both coverage and the number of proteins 

identified gradually decreases. However, even when an 
organism represents around 1% of a community, more 
than 100 of its proteins can be identified. Results from 
this model system can be used to constrain expected 
outcomes for other proteogenomic studies.

Proteomics has also been applied to study wastewater 
sludge microbial communities that are used for enhanced 
biological phosphorus removal (EPBR). As for AMD 
biofilms, EBPR samples are characterized by uneven 
species-abundance patterns; specifically, the commu-
nity is dominated by organisms that are closely related 
to Accumulibacter phosphatis. Reference genomes for 
A. phosphatis in sludge samples from the united States 
and Australia 55 were used to identify MS/MS spectra for 
peptides from aerobic and anaerobic activated sludge 
communities from a uK bioreactor. using 2D-PAGE, 
46 proteins were identified from 111 excised spots56. 
Subsequent re-analysis using lc–MS/MS and meth-
ods developed for analysis of AMD biofilm proteomes 

Box 1 | Strain-resolved proteomics from environmental samples

Although general genomics databases can be used, 
proteogenomics methods optimally rely on the generation 
of genomics and proteomics data from the same sample 
(see panel a). DNA is extracted from biological samples, 
fragmented, cloned and sequenced, and the resulting 
sequencing reads are assembled and/or binned. After gene 
annotation, the protein-sequence database is constructed 
and an in silico trypsin digest is performed on the predicted 
proteins, resulting in a peptide database (top). From the 
same or similar biological samples, total community 
protein is extracted and then digested using trypsin. 
Peptide separation by two-dimensional (2D) nano-liquid 
chromatography (LC) and tandem mass spectrometry (MS/
MS) is performed (see FiG. 1) (bottom). The spectra are 
matched to peptides in the database, and after filtering a 
list of identified peptides is obtained. Based on their 

unique occurrence in one protein in the whole database, certain peptides (unique peptides, coloured red and blue) can be 
unambiguously tracked back to their corresponding proteins and thus permit reliable protein identification. Non-unique 
peptides (grey) cannot be used to uniquely identify a protein, but these data are used in the calculation of protein 
coverage and abundance measures. The identified proteins are placed back into the genomic context of the organisms 
they are derived from to allow for the biological mining of the data. In case the protein mixture was fractionated (into 
extracellular, soluble and membrane fractions) after the initial extraction, comparison of the fractionation data can 
provide information about protein localization. 

The power conveyed by MS due to its high mass accuracy is demonstrated by overlaying two spectra from closely related 
peptides (see panel b) by highlighting the major peaks and by linking them to their corresponding amino-acid sequence 
(blue for one peptide-variant spectrum and red for another). In this example, a shift of around 14 daltons due to the 
substitution of valine by isoleucine and a second shift of an additional 14 daltons due to the substitution of valine by leucine 
are observed. Due to the high mass accuracy of the parent ion measurement and the MS/MS measurements, one 
amino-acid change between two orthologous peptides can easily be discerned, thus allowing strain-resolved proteomics. 
Asterisks represent amino acids that undergo substitution.
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identified over 2,300 proteins57, making extensive analy-
sis of the metabolic pathways central to EBPR possible 
(TABle 1).

Strain-resolved proteogenomics
Variation in the makeup of microbial communities over 
space and time, either due to changes in relative abun-
dance of strain variants in populations or migration, 
presents a key challenge for proteomics studies. Because 
peptide identification depends on an exact match 
between the predicted and observed masses of peptides 
and their fragmentation products (FiG. 1; BOX 1), even a 
single amino-acid substitution (except for isoleucine–
leucine and a small subset of other substitutions in exper-
iments with lower mass accuracy measurements) will 
prevent peptide identification. For more abundant and 
larger proteins, this problem is less severe because protein 
identification relies typically on the identification of only 
two peptides (that is, failure to detect a few of the pep-
tides due to amino-acid substitutions will not confound 
protein identification). The more diverged the protein is 
from the reference sequence, the more severe the prob-
lem58. computational models predicted loss of half of the 
identifiable proteins when the organism in the sample 
diverges 8–23% from the available sequence data, and 
experimental data showed this to occur at 10% average 
amino-acid divergence (BOX 2).Thus, shotgun proteomics 
is capable of cross-strain identifications, but avoids most 
cross-species false positives. However, strain variation not 
only prevents peptide and potentially protein identifica-
tion, it also confounds estimates of protein abundances 
that are based on spectral count per protein. 

The sensitivity of MS measurements to amino-acid 
substitutions facilitates an important avenue for microbial 
(and other) community studies: strain typing, peptide by 

peptide. This approach was applied to the same AMD bio-
film studied by Ram et al.52 when a second genomic dataset 
from a third AMD biofilm community became available. 
The new dataset yielded a new genome for Leptospirillum 
group II. Each peptide for each predicted protein in the two 
Leptospirillum group II genomes was classified as either 
unique to one strain or shared by both strains. By mapping 
the peptides identified back into a genomic context it was 
possible to genotype the Leptospirillum group II type, pep-
tide by peptide and protein by protein, in the proteomically 
characterized (but not genomically sequenced) sample (a 
process called proteomics inferred genome typing (PIGT)). 
This tight and reciprocal coupling between genomics and 
proteomics is recognized in the term proteogenomics. 
The first application of strain-resolved proteogenomics 
to a microbial community resulted in the identification of  
a new Leptospirillum group II genotype that represents a  
recombinant hybrid of the genomically characterized 
types59 (BOX 2). The PIGT method was applied to a group 
of 28 community proteomics datasets to reveal several 
new recombinant Leptospirillum group II genotypes in the 
AMD system. The findings indicate environment-based 
selection for the dominant Leptospirillum group II type in  
each sample, suggesting that these bacteria use recombination  
as a strategy for fine-scale adaptation60.

Strain-resolved proteogenomics analyses were also 
applied to the EBPR sludge samples, following methods 
used by lo et al.59 and making use of reference genomes 
from the two different previously reported EBPR sam-
ples55. Interestingly, substantial differences in protein 
abundance were found among A. phosphatis enzyme 
variants that are involved in both core-metabolism and 
EBPR-specific pathways. These differences in inferred 
activity may reflect partitioning of strain variants in 
microniches in the sludge57. 

Proteomics in more complex ecosystems
Both EBPR sludge and AMD biofilms are far less com-
plex (due to dominance by one or a few populations) 
than other systems to which proteomics might be applied 
(for example water, soil sediments, the ocean and the 
human microbiome). The large number of unique taxa, 
each producing unique protein products at highly vari-
able abundance levels (dynamic range) create numerous 
technical challenges, some of which are similar to those 
faced in proteomics studies of multicellular organisms. 
complete detection of the majority of unique protein 
products in a sample may be impossible, even in systems 
of only moderate complexity61 This raises several ques-
tions. How realistic is it to try to achieve deep proteomic 
sampling of complex communities? can measurements 
of thousands of proteins using current technologies pro-
vide useful information if the sample contains hundreds 
of thousands or millions of unique proteins? Will it ever 
be possible to confidently determine which proteins the 
measured peptides come from and, more importantly, 
from which organisms they derive? How can we quanti-
tatively compare the abundances of proteins among com-
plex environmental samples, when protein abundances, 
organism abundances and genotypes differ? Will it be 
possible to reveal the dynamics of metabolic networks 

Figure 2 | relationship between species abundance, protein identification levels 
and protein coverage. The plots were drawn based on the Leptospirillum group II and III 
data from 25 proteomics datasets from the acid mine drainage project60. Organism 
abundance levels were determined by FISH (fluorescent in situ hybridization). Increase in 
organism abundance has more effect on the number of proteins identified than on the 
average coverage. The left axis indicates the number of proteins (blue triangles) and the 
right axis refers to the average coverage (red circles). Please note the different scales for 
the two sides. 
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and truly begin to understand how these communities 
function at the molecular level? We feel that high com-
plexity generates problems that cannot be adequately 
overcome using current technologies. As we will discuss 
below, the field is moving quickly and we anticipate that 
the technical challenges can be identified and over-
come so that proteomics-based functional analyses of  
microbial communities will become a reality.

While several metaproteomics projects have attempted 
to characterize proteins in environmental samples repre-
senting complex communities, few such projects have 
identified more than a handful of proteins (TABle 1). 
Generally, 2D lc–MS/MS-based methods are better for 
community or metaproteomics studies, although SDS-
PAGE-based separation is sometimes preferred62. A study 
of the dominant populations (SAR11, Prochlorococcus 
and Synechococcus) in an ocean sample uncovered a high 
bias in expression of periplasmic substrate-binding pro-
teins in SAR11. This was inferred to represent a means 

to maximize nutrient acquisition in the highly nutrient-
depleted environment63. The availability of extensive 
metagenomic datasets from ocean samples also allowed 
for the strain-resolved analysis of periplasmic phosphate-
binding proteins (PtsS), which revealed differences in 
protein abundance between different PtsS subclades. This 
aspect of the study is an example of the importance of 
the dynamic interplay between proteomics and genom-
ics, and highlights the need for new analysis methods that 
resolve the proteomics signal from closely related protein 
variants on a community-wide scale.

one interesting, emerging research area for micro-
bial community proteomics studies is the Human 
Microbiome Project, which is focused on a characteri-
zation of the suite of microbial species that are intimately 
tethered to human hosts. For example, the human gut 
contains a dense, complex and diverse microbial com-
munity (termed the gut microbiome) that is critical for 
both health and disease. Substantial efforts have been 
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Box 2 | implications of sequence divergence to proteogenomics

Microbial life is extraordinarily diverse and sequence variation is an inherent characteristic of most natural species 
populations. For proteomics applications, differences in amino-acid sequences between closely related organisms in a 
natural community can be looked at from two perspectives.

On one hand, amino-acid substitutions decrease the efficiency of mass spectrometry (MS)-based protein identification, 
as most MS-based proteomics is based on identical matches between the measured peptides and the database entries. 
Computational models predicted loss of half of the identifiable proteins when the organism in the sample diverges 8–23% 
from the available sequence data. Experimental data indicates loss of half the identifiable proteins at 90% amino-acid 
identity, due to a ~6% reduction of the coverage of proteins by identified peptides per 1% amino-acid divergence (see 
panel a). Panel a constructed from data in ReF. 58.

On the other hand, the influence of sequence variation on proteomics can be used to discriminate subtly different protein 
sequences from closely related organisms. This allows for the resolution of the behaviour of closely related organisms when 
they co-occur in the same environment (V.J.D., unpublished observations). Strain-resolved proteomics holds promise for 
unravelling the ecological significance of sequence divergence between strains of one species. This method has also been 
used for genotyping and has revealed that recombination occurs between closely related sequence types59,60 (see panel b). 
Panel b provides an example of a proteomics-inferred genome typing (PIGT) dataset. Unique peptide counts — peptides 
with a sequence that is unique in the whole search database — allow researchers to discriminate between closely related 
variants of a particular protein. Protein sequences from Leptospirillum group II strain 1 (blue) and Leptospirillum group II 
strain 2 (red) detected in the sample are plotted in the outside scatter plot. These surround the comparative genomic 
representation of the two Leptospirillum group II genomes — white space indicates that no orthologue is present in one of 
the two types, red and blue indicate that a gene is present at that locus and purple indicates that the orthologues are 100% 
identical. Grey represents proteins identified from non-unique peptides that thus cannot be distinguished between the two 
strains. We observed regions where only strain 1 type proteins were identified, alternating with 10–100 kb regions where 
only strain 2 type proteins were found. This indicated that the strain present in the analysed sample was a recombinant 
variant of both strains. Reproduced with permission from ReF. 60 (2009) Blackwell Publishing.
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Binning methods
Methods used in 
metagenomics to group 
sequencing reads and 
assembled sequence contigs 
by the organism that they 
come from.

directed at large-scale DNA sequencing to characterize 
the human microbiome. While this metagenome infor-
mation will provide details about the repertoire of genes 
that are present, it provides no direct information about 
which genes are expressed or functioning. To investi-
gate whether proteomics would even be possible in the 
complex human gut microbiome, this whole community 
proteomics approach was used to study the microbial 
consortium in faecal samples from matched human 
twins64. This approach was successful for deep proteome 
measurements of thousands of proteins from the micro-
bial membership. Several unknown proteins represented 
previously undiscovered microbial pathways, revealing a 
novel and complex interaction between the human host 
and the associated microorganisms. While these results 
are preliminary and must be extended for more com-
prehensive evaluation of normal versus diseased states, 
these initial results suggest that proteomics approaches 
are viable for human microbiome studies.

As highlighted above, biodiversity (species richness 
and abundance) will be a key factor in defining chal-
lenges for studies of complex systems. Are there a few 
dominant organisms, or are all organisms present at com-
parable abundance levels? Are reference isolate genomic 
sequences or relevant metagenomics datasets available? 
Analysis of the dominant proteomes and of genomi-
cally-defined members of extremely complex samples is 
straightforward with current techniques; the same analy-
sis for the low-level members remains very challenging. 
Although cell-enrichment techniques can enable sam-
pling of proteomes of low-abundance members, potential 
artefacts associated with proteome changes during proc-
esses such as cell sorting or filtration cannot be ignored. 
In the longer term, the availability of parallel metagen-
omes is anticipated to be less of a problem as extensive 
sequencing efforts that are now underway will provide 
reference isolate genome sequences for under sampled 
branches of the tree of life (see The Tree of life).

Another important challenge in environmental pro-
teomics is the need for efficient and non-biased extraction 
of proteins from complex environmental matrices. Initial 
studies of AMD biofilm communities compared lysis by 
sonication with other extraction methods that made use 
of different pH buffers. Biases appear unavoidable, but can 
sometimes be advantageous. For example, the proteomes 
of low-abundance community members can sometimes 
be preferentially sampled because of biased lysis.

Additional challenges for quantitative protein extrac-
tion can arise due to the sample matrix, specifically for 
soil and sediment samples. Most initial proteomics stud-
ies in soil have found that efficient cell lysis and protein 
extraction is problematic65,66. Mineral assemblages act 
as mixed-bed chromatography columns that can irre-
versibly bind peptides and proteins. consequently, only 
a handful of proteins have been identified or quanti-
fied from soil65,66 and methodological challenges have 
limited biological insights into soil systems. Due to the 
extraordinarily high levels of species richness and prob-
lems with protein recovery, soils are perhaps the grand 
technical challenge for the emerging field of microbial 
community proteomics.

Another major technical challenge for community pro-
teogenomics is the dynamic range (see also ReF. 61) — that 
is, the range of abundances (low to high) of proteins that 
can be detected simultaneously. While dynamic range can 
be problematic for microbial isolate studies, it is signifi-
cantly more so for mixtures of organisms due to the une-
ven abundances of different organisms (for example, if the 
dominant population contributes 10% of the community, 
whereas lowly abundant organisms only contribute 0.1%). 
Fortunately, the past 5 years have seen the dynamic ranges 
for standard proteomics of lc–MS systems increase by 
1–2 orders of magnitude. This advance has been achieved 
through the refinement of chromatographic methods and 
by coupling better peptide separations to new generation 
MS instruments that can retain large quantities of ions 
in the system, thus generating better sensitivity42,43. The 
integration of high-throughput MS/MS methodologies 
with high-performance mass spectrometers that are capa-
ble of high-resolution (peak widths less than 0.01 daltons) 
and high-mass accuracies (to a few millidaltons) holds 
great promise for future microbial community proteomics  
measurements.

An important consideration that impacts the outcome 
of proteomics experiments is quality of genome annota-
tion. Missing protein predictions or predictions of hypo-
thetical proteins in the wrong reading frame will preclude 
protein identification. However, the existence of a protein 
database in which all hypothetical proteins are predicted 
in all reading frames makes it possible to use proteomics 
identification to validate gene predictions52,67–70. Incorrect 
gene starts and failure to predict signal peptides can also 
affect protein identification, especially for low-abundance  
proteins for which few peptides will be identified. 
Refinement of gene predictions and confirmation of 
signal peptide predictions also represents important  
feedback from proteomics and genomics studies.

The use of fragmentary metagenomics datasets will be 
restricted if sequences cannot be accurately assigned to 
the correct organism. Although the advent of new DNA 
sequencing technologies generating vast quantities of 
DNA sequence will enable proteomics studies of numer-
ous systems, high-throughput accurate binning methods 
will be essential for data interpretation. Developments 
in sequence-signature analysis hold great promise for 
resolving this challenge71,72, and proteomics may also 
help. For example, statistical analysis of proteomics data 
from communities with highly skewed membership may 
assist in resolving which genome fragments belongs to 
which organisms.

As the field advances from protein identification/vali-
dation and qualitative analysis to tackle detailed biological 
questions, accurate quantification of proteins across a wide 
dynamic range will be important. Quantification methods 
described above and developed for microbial isolates can 
be applied to consortia, but an additional consideration 
is community membership. For example, changes in the 
concentration of species in a time-series experiments will 
alter protein abundance levels. consequently, monitoring 
community makeup (for example, using FISH is essential 
so that overall activity levels and cell abundance levels can 
be differentiated.
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De novo sequencing or 
sequence tagging
Attempting to obtain full or 
partial sequences directly from 
tandem mass spectra without 
the use of a genome or 
proteome database.

correct peptide identification lies at the heart of effec-
tive proteomics methods. Typical 2D–lc–MS/MS experi-
ments generate tens of thousands of tandem MS spectra 
per day, a fraction of which are dominated by noise from 
the instrument or chemicals in the solvent gradient. 
Search algorithms produce identifications for every MS/
MS spectrum, so filtering methods must be used to reduce 
the number of false positive peptide identifications. The 
careful balance of false positives and false negatives is 
essential but complex, and there are many computational 
techniques for solving this problem73,74. False positive 
identification rates depend highly on the accuracy of 
the measurement of the masses of the primary peptides 
and fragment ions. Instruments with high mass accura-
cies that are sufficient to discriminate all amino acids for 
which a mass difference exists will be essential to limit 
false discovery rates of peptides and proteins in studies of 
complex microbial communities.

As noted above, the move from genomically defined 
isolates to incompletely defined complex environ-
mental communities is complicated by false positive 
peptide identifications that occur when spectra are 
assigned to completely different peptides that hap-
pen to have high scores. This problem can be solved 
if peptides can be identified from the spectra them-
selves (without a reference sequence). The advent of 
high mass accuracy MS systems makes de novo sequenc-
ing or sequence tagging possible75. De novo sequencing 
methods are designed to determine peptide sequences 
directly from the MS/MS spectra, whereas sequence 
tagging approaches produce a short tag that can be 
matched against a database. Both techniques are 
still in development, and most methods use these 
approaches in combination. Availability of alternative 
methods for fragmenting peptides in the mass spec-
trometer will provide additional mass constraints for 
peptide-sequence determination and are thus likely to 
be important for the successful deployment of de novo 
approaches.

A final grand challenge for proteomics studies of com-
plex microbial communities will be the development of 
methods to analyse small quantities of sample. This will 
enable characterization of finely spatially resolved environ-
mental samples and analysis of systems with limited bio-
mass. current techniques require hundreds of milligrams 
of wet cellular material for standard lyses and fractionation 
and 1–10 mg of wet cellular material for small-scale lysis 
without fractionation. To decrease sample size require-
ments by an order of magnitude may require a shift away 
from, for example, lyses in microfuge tubes and chroma-
tography in low-flow columns, towards cell lysis, protein 
digestion and peptide separation on microchip-based 
platforms directly connected to MS systems. Although 
this is not likely to occur in the next few years, signifi-
cant research in this area holds promise for commercial  
chip-based platforms in the foreseeable future.

Conclusions
Although the field of community proteomics is in its 
infancy, it is becoming clear that the technology devel-
oped for microbial isolates can be extended into these 
more complicated systems. current technology can 
identify proteins of populations that comprise at least 
1% of the community and for which closely related 
genomic sequences are available, but future technologi-
cal improvements should make community proteomics 
applicable to less abundant populations. This will allow 
the extension of current studies of community functional 
partitioning, resource competition and strain-resolved 
adaptation. Protein-centric metaproteomics approaches 
will also become important tools to study microbial eco-
systems. However, we need to focus on community pro-
teogenomics, where simultaneous inferences regarding 
the dynamics of the genotype and identified proteins are 
made. only by dynamically integrating genomics and 
proteomics data can we make meaningful quantitative 
comparisons of community proteomics data between 
different samples and ecosystems.
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