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Abstract

This thesis studies how a chosen set of parameters for a Ring Learning With Errors
(RLWE) cryptographic instance affects its ability to withstand a certain type of at-
tack. We begin with some non-technical motivation on the specific qualities of RLWE
that support its candidacy as a post-quantum cryptographic protocol, and why such
protocols are necessary due to recent developments in computing. We then discuss
some of the context for RLWE, providing some overview on important concepts in
algebraic number theory that underpin the mathematical structure of RLWE. We de-
fine several variants of RLWE which researchers in this field have analyzed, provide
some detail on how these variants relate to each other, and cover some of the types
of attacks against these variants. Following this overview, we introduce the experi-
mental phase of this thesis project and cover the functionality of a program used to
simulate a RLWE attack. Finally, we analyze some data generated as a result of tests
run on our program and briefly discuss how it relates to previous hypotheses on how
a RLWE instance’s security should be characterized.
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Chapter 1

Introduction

This thesis project studies a new computational problem introduced in the last twenty

years known as Ring Learning with Errors (RLWE). The cryptosystem based on this

problem is considered by researchers as a viable candidate for encryption that is both

quantum-safe as well as fully-homomorphic.

As the theoretical conceptualization of the quantum computer has become ever-

closer to concrete implementations in the last few years, many of the cryptographic

protocols used in practice will become insecure once quantum computers are built.

Therefore, as intelligence agencies and other entities have announced their intent to

abandon these encryption schemes, a secure replacement is needed. Much of the

current cryptographic research has been focused on a new class of problems, which

includes RLWE, that are computationally hard to solve for classical as well as non-

classical computers.

Additionally, RLWE is desirable as a candidate for fully-homomorphic encryption.

We say that a hypothetical encryption scheme is fully-homomorphic if it respects the

properties of a ring homomorphism (a mapping between two rings that preserves the
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familiar arithmetic operations of addition and multiplication) between data in its

unencrypted and encrypted states. The fully-homomorphic property is of practical

interest because it allows for one to perform computations and analysis on encrypted

data, therefore protecting the data’s sensitivity as well as allowing remote computa-

tions in cases where it is stored in a database or cloud server.

There are several points of interest in the previous work on this topic that we wish

to investigate further. Firstly, we wish to study the bijection between the various types

of rings in each variant of RLWE. This will give us a clearer ability to translate security

parameters between these variants (specifically, generalizing the conditions set by

[Pei16] to ensure invulnerability of dual-RLWE under certain attacks), understand

exactly how the RLWE parameters affect an instance’s security (particularly the

relationship between the norm of the prime modulus and the width of the statistical

distribution), and unify the study of the types of attacks on these cryptosystems.

During our research, we worked to apply an attack described in the literature as

testable code. Using this newly-developed code, we deployed this attack on these cryp-

tosystems and tested the security of various parameters described in the literature.

We compared the results of these tests to the literature and identify any discrepancies

between the results. To this end, our goal in this project was to understand if the

security parameters in [Pei16] are sufficient or merely necessary in regards to their

strictness.
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Chapter 2

Background

2.1 Historical Context for RLWE

For decades, cryptosystems based on classically-hard problems have been considered

safe from attacks. The well-known RSA cryptosystem, for example, uses the number-

theoretical problem of integer factorization and derives its security from the fact that

this problem cannot be solved by an attacker using a non-quantum computer in a

reasonable amount of time. However, the development of quantum computers in

recent years has warranted the need for cryptosystems based on a quantum-hard as

well as classically-hard problem. Indeed, in 1995 Shor gave an algorithm to factor

integers in quantum polynomial time in [Sho97]. Much of the research presented in

the literature on Ring Learning with Errors was conducted and written in the mid-

2010s as quantum-safe security became a non-theoretical concern. As such, many

of the articles on this subject are in direct response with each other and/or present

potential improvements on the general RLWE scheme.

Provably secure encryption schemes based on lattice problems were first suggested
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in 1996 by Ajtai in [Ajt96], but it was not until 2005 that the first instance of the

more general Learning With Errors problem and its applications to cryptography were

formulated by Regev in [Reg05]. In the years following this, the hardness of finding

the shortest vector in “ideal lattices” was studied extensively, and ideal lattices were

used to give several cryptographic constructions in [LM06,PR06,Mic07].

Other works related to this thesis are [LM18], where the authors present a signa-

ture scheme based on the PLWE problem we present here, [PR07], where the authors

present a signature scheme based on the RLWE problem, and [LPR10,LPR13], where

the authors present a signature scheme based on the dual-RLWE problem.

Even though it is not a focus of this thesis, another reason why RLWE is so

studied is that it is an instance of an encryption scheme that can be made to be

fully-homomorphic. The idea of a fully-homomorphic encryption scheme was first

suggested in 1978 (the same year the RSA cryptosystem was introduced) by Rivest,

Adleman and Dertouzos in [RAD78] as they described the first public key encryption

scheme. However, the authors were not able to give an actual example of a fully-

homomorphic scheme, and they could only talk about what properties it might have

and what might be true about it.

Some notable steps towards a fully homomorphic scheme are [SYY99], and [BGN05],

who both give semi-homomorphic schemes that each in their own way fall just short

of being fully-homomorphic. It was not until 2009 that Gentry in [Gen09] gave

the first construction of a fully-homomorphic scheme, using the RLWE problem

we present here. More immediately, our research is directly influenced by the arti-

cles [CLS17a,CLS17b,EHL14,ELOS15,ELOS16,Pei16,CIV16a,CIV16b], which study

closely related questions.
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For our research, there are three variants of RLWE cryptography that we will

consider - Polynomial Learning with Errors (PLWE), primal-RLWE, and dual-RLWE.

We will test the security of instances of PLWE as presented in the literature, as well

as consider the bijection between the polynomial rings used in PLWE and the rings

of integers of non-dual RLWE. Before detailing the RLWE problem and explaining

each of its variants, we recall some relevant concepts from algebraic number theory.

2.2 Algebraic Number Theory

We introduce several key definitions, starting with the most fundamental concepts to

our work.

Definition 2.2.1 (Algebraic Number Field). An algebraic number field K is a finite

extension of the field of rational numbers.

We are particularly interested in a subring of K, known as the ring of integers.

Definition 2.2.2 (Ring of Integers). Let K be a number field. The ring of integers,

typically denoted OK , is the subring of K that contains all the elements of K whose

monic minimal polynomial has coefficients in the integers (as opposed to the elements

whose monic minimal polynomial has coefficients in Q).

Note that Z is always a subset of OK , and in fact it is the smallest possible ring

of integers.

Definition 2.2.3 (Fractional Ideal). Let R be an integral domain and let K be its

field of fractions (K is the smallest field R can be embedded in). A fractional ideal
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of R is an R-submodule I of K such that there exists a nonzero r ∈ R such that

rI ⊆ R.

This latter concept is important in algebraic number theory; for instance, OK

is a fractional ideal of K. Now, we define a certain type of embedding and a set

that contains it, the latter concept of which is essential to the RLWE computational

problem.

Definition 2.2.4 (Minkowski Embedding). Let K be a number field. A Minkowski

embedding is a nonzero map f : K → C that sends elements of an algebraic number

field into the field of complex numbers.

Note that embeddings from K into the real numbers are also Minkowski embed-

dings, since R ⊂ C.

Definition 2.2.5 (Canonical Embedding). Let K be a number field, s1 be the num-

ber of real Minkowski embeddings, and s2 be the number of all its pairs of complex

Minkowski embeddings. The oftuple all Minkowski embeddings of an algebraic num-

ber field K forms a larger function M : K → Rs1 × C2s2 , known as the canonical

embedding.

The image of OK under the mapM is the space we are interested in; after applying

the canonical embedding, M(OK) forms a structure known as a lattice.

Definition 2.2.6 (Lattice). A lattice L in K is defined as the Z-span of a Q-basis of

K.

One important function we will need later is the trace product. We define the

trace product in terms of the real and complex embeddings of K, where α ∈ K, σi are

6



the real embeddings, and τi are a choirce of one element from each pair of complex

embeddings:

TrK/Q(α) =
s1∑

i=1
σi(α) +

s2∑
i=1

(
τi(α) + τi(α)

)
.

Note that [K : Q] = n = s1 + 2s2, exactly the dimension of the geometric space

in which the lattice points are placed. A generalized formal definition of the trace

product follows.

Definition 2.2.7 (Trace Product). Let K be an algebraic number field, L be a lattice

in K, and σi for i = 1, . . . , n be the Minkowski embeddings of K. The trace product

function, denoted TrK/Q(xy) for x ∈ K, y ∈ L, is defined as:

TrK/Q(xy) = 〈M(x),M(y)〉 =
n∑

i=1
σi(x)σi(y)

This function behaves similarly to the familiar dot product operation from linear

algebra.

2.3 Non-Dual RLWE Definitions

The RLWE cryptography scheme (known as primal-RLWE or non-dual RLWE, de-

scribed in detail in [CLS17a]) consists of a ring (typically the ring of integers OK of

an algebraic number field K), a prime modulus q, and an error distribution (either

a Gaussian distribution or a discretization of a Gaussian). We consider the ring R

modulo qR, henceforth referred to as Rq.

There are two problems that utilize these parameters - a search problem and a de-
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cision problem (much of the following information is taken from Section 2 of [CLS17a]

and [ELOS16], and we refer the reader to these sources for a more mathematically-

rigorous description of these problems). In both (non-dual) problems, sample pairs

(a, b) from Rq × Rq are constructed. The value of a is independent (sampled from a

uniformly-random distribution), and b is dependent on a such that b = as+ e, where

e is a relatively small error added to the value as a security measure and sampled

from a Gaussian distribution whose wideness is determined by a parameter σ ∈ R>0,

and s is a secret value in Rq. Finally, we give definitions for the two non-dual RLWE

problems.

Definition 2.3.1 (The Non-Dual RLWE Search Problem). The objective of the

search problem is to discover a secret s ∈ Rq directly given an arbitrary number

of samples (a, b) from Rq ×Rq with b = as+ e.

Definition 2.3.2 (The Non-Dual RLWE Decision Problem). The objective of the

decision problem is to distinguish samples (a, b) with b = as + e from those in a

uniformly random distribution of Rq ×Rq.

2.4 RLWE Variants and Cryptographic

Reductions

There are two other variants of RLWE that are important to note, as they are dis-

cussed together with primal-RLWE (as outlined above) in security considerations.

These two variants are known as Polynomial Learning with Errors (PLWE) and dual-

RLWE.
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2.4.1 RLWE Variants

Polynomial Learning with Errors

Firstly, we give a formal definition of RLWE’s polynomial-ring variant, PLWE (the

articles [ELOS16] and [EHL14] are recommended for further reading on this subject).

Definition 2.4.1 (Polynomial Learning with Errors). An instance of Polynomial

Learning with Errors consists of the following:

• A polynomial ring Pq = Fq[x]/(f(x)), where f(x) is a monic irreducible poly-

nomial with Fq-coefficients that splits completely over Fq and has degree n,

• A prime modulus q ∈ Z,

• A basis for the polynomial ring,

• A parameter σ ∈ R>0 specifying the width of the spherical discretized Gaussian

error distribution.

Like primal-RLWE, PLWE has an analogous search problem (to find s(x) given

samples (ai(x), bi(x) = ai(x)s(x) + ei(x)) ∈ Pq × Pq) and decision problem (to distin-

guish between PLWE samples and uniformly random samples from Pq × Pq).

Dual-RLWE

Dual-RLWE is a variant of primal-RLWE where the secret s and the errors ei be-

long to the dual of the ring R parameterizing the instance. In a number field, the

dual of a lattice also has a lattice structure. Dual-RLWE is detailed and defined

in [Pei16], which we use as a primary point of reference for much of the background
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work described in this section; much of the algebraic number theory involved in a

general non-cryptographic setting is covered in detail in [Con09], from which we use

the definition of the dual lattice.

Definition 2.4.2 (Dual Lattice). Let K be a number field and L be a lattice in K.

The dual of L is

L∨ = {α ∈ K : TrK/Q(αL) ⊂ Z},

where TrK/Q is the notation for the trace product function from section 2.2.

In [Con09], it is proven that to check whether an element α of K is in the dual

lattice, it suffices to verify that the trace product of α with the basis elements of the

lattice is an integer. Because only the basis is required to represent the lattice as a

whole, this gives a straightforward way to compute the elements of L∨. Additionally,

note that the dual lattice has the two important properties that (L∨)∨ = L and that

L1 ⊂ L2 if and only if L∨
2 ⊂ L∨

1 .

Although non-intuitive from an elementary perspective, this lattice counterpart is

not particularly difficult to compute and express concisely.

2.4.2 Cryptographic Reductions

In this section we discuss how the search and decision problems discussed in 2.3 relate

to each other. Of note is the discussion in [CLS17a] on how to convert the search

RLWE problem to a decision RLWE problem for Galois number fields. This reduction

shows that the search and decision RLWE problems are equivalent in their relative

computational hardness under certain assumptions.
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Reductions and resultant comparisons of computational hardness exist between

the different variants of RLWE beyond the search-decision reduction, as well. For

instance, as discussed in Section 5 of [ELOS16], a connection between non-dual RLWE

and PLWE is the reduction of the former problem to the latter by considering rings

Rq
∼= Pq in this case the only distinction is the choice of error distribution (note

that the spherical Gaussian in RLWE is not equivalent to the discretized Gaussian in

PLWE).

Section 2.3 of [CLS17b] discusses an equivalency between dual and non-dual

RLWE in particular under the assumption that the dual ring of R∨ is principal as

a fractional ideal (meaning that R∨ is generated by a single element). There are

numerous other qualitative comparisons based on computational hardness that relate

the different variants of the general RLWE problem together, and help conceptually

generalize the nature of RLWE attacks.

2.5 Attacks on RLWE-Family Problems

Now we discuss the attacks on RLWE and its related problems as covered in the

literature. The Chi-square attack in [CLS17a] is an example of a more general type of

attack on the decision version of RLWE which applies a ring homomorphism from the

RLWE ring Rq to a finite field Fq. If q is small enough, the attack guesses the image of

the secret as an element of Fq instead of Rq, and then examines the distribution of the

samples to see if it relates to the error distribution through a Chi-square statistical

test. Note that this type of attack can be modified to attack the search problem.

In [CLS17b], the same authors improve on the efficiency of their original Chi-square
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attack by only considering certain cosets of Fq instead of the entire finite field.

Another variation on this attack on weak instances of dual-RLWE, as referenced

in [Pei16], involves reduction modulo an ideal divisor of R. By applying this reduction

to R, one can attack a dual-RLWE instance directly if its error distribution is non-

uniform or by reducing to error-less LWE which is trivial to solve.

Furthermore, [ELOS16] covers distinguishing and decoding attacks on (namely,

but not exclusively) PLWE instances, both characterized by ring homomorphisms

from Pq to smaller rings and reducing the polynomial p(x) to p(α), for small-order

roots α of the polynomial modulus of Pq, which is similar to the attacks on the RLWE

and dual-RLWE problems.
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Chapter 3

Experiment and Results

3.1 Experiment Description and Expla-

nation of Program

For this project, we used a program originally written by Elias, Lauter, Ozman and

Stange for the article [ELOS15]. After refactoring this code both to better understand

the underlying functionality of the program as well as to adapt it to suit our experi-

mental needs, we proceeded to run several tests. The modified program simulates an

RLWE Chi-square attack (as discussed from a theoretical standpoint earlier in 2.5)

by taking in the parameters of an RLWE instance, creating RLWE samples, and then

attempting to guess the image of the secret in a smaller ring. The parameters which

are varied are the polynomial defining the polynomial ring, the modulus, the number

of samples to be used in the test, and the number of trials for the program to run.
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3.2 Literature Parameters for Security

Much of the discussion contained in the literature centers on the parameters charac-

terizing what the authors can show to be secure or non-secure for RLWE instances.

This thesis primarily serves to test these parameters as necessary or merely sufficient

in their security. These parameters consist of a number field K with associated prime

moduli q and an error-distribution width σ. Our main concern involves the exact

cutoffs at which the prime modulus and distribution width affect a RLWE instance’s

security.

3.3 Experimental Results

Much of the computation done for this project involved finding cases where the at-

tack implemented in the program was successful. We emphasize that a “success” in

the context of the program indicates an insecurity, whereas a “failure” indicates the

instance’s effective defense against the program. In this case we sought a non-zero

success rate in 20 randomized trials on the same K, q, and σ parameters. In many

number fields, there was a consistent attack success rate of 0 out of 20 trials (or 0

out of 1 trial when done rapidly) for each set of parameters regardless of the choice

of q and σ. However, we found seven weak instances on five number fields1 with

non-zero success rates in which we can see how the choice of q and σ directly affect

the success/fail ratio of the attack. First, let us consider a composite chart of all

seven instances.

1Note that the defining polynomial of each number field, along with a comprehensive list of tests,
is provided in Appendix I.
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Figure 3.1: The RLWE attack program’s success rate on five number field/prime modulus
combinations, with varying σ-value, which is denoted by s in this graph.
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From this figure, we can see that the width of the error distribution (measured

on the x-axis) directly affects the success of the attack simulated in the program.

Specifically, we can see that instances with a small distribution (with σ < 2) is easily

susceptible to the attack, whereas those with wider distributions tend to withstand

the attack better. Now, we consider the two pairs of instances characterized by the

same number field but different prime moduli.

Figure 3.2: The two weak RLWE instances each on number fields 12 and 13.
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These four instances, considered separately from those cases with a unique number

field, show that the choice of prime modulus also affects the weakness of an RLWE

instance. The orange lines in each chart represent the larger of the two prime moduli

in each case, and the respective instances are more susceptible to the randomized

attacks from our program.

Finally, let us consider the three cases where only one instance from a given

number field was found to be insecure.

Figure 3.3: The weak RLWE instances with unique number fields.

Note that Number Field 1 has degree 10, Number Field 6 has degree 12, and

Number Field 16 has degree 20. Thus, the instance in Figure 3.3 with the largest-

degree number field remains the weakest of the three depicted. This suggests that

the size of the number field degree may also impact a RLWE instance’s security.

While these instances provide insight into how the values of the error-distribution

width and prime modulus affect a RLWE instance’s weakness, it is currently unknown

how the choice of number field definitively affects an instance’s security. This would
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be an interesting point for further research, in addition to further granularizing the

σ-value points of success/failure of the attack on weak instances.

Overall, though, our results showing the relationship between a RLWE instance’s

security and σ are consistent with the hypotheses in [Pei16]. However, we note that

Peikert’s conditions are sufficient but not necessary due to many instances found

where there are no attack successes regardless of the choice of σ (see Appendix I

for a comprehensive list). This suggests that the requisite conditions for a RLWE

instance’s security can be more precisely characterized upon further inquiry.
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Appendix I: Defining Polynomials

and Test Results

Below is a table comprising the defining polynomial of each number field that was

tested for this project. It is followed by a comprehensive list of every test run, listing

the respective number field, prime modulus, σ-value, and success ratio.

Defining Polynomials

Number Field Defining Polynomial

Number Field 1 y10 + 9y8 + 28y6 + 35y4 + 15y2 + 1

Number Field 2 y12− y11− 25y10 + 25y9 + 235y8− 235y7−

1013y6 + 1013y5 + 1899y4 − 1899y3 −

1013y2 + 1013y − 181

Number Field 3 y12 + 11y10 + 45y8 + 84y6 + 70y4 + 21y2 + 1

Number Field 4 y12 +13y10 +64y8 +146y6 +148y4 +48y2 +1

Number Field 5 y12 +12y10 +53y8 +104y6 +86y4 +24y2 +1

Number Field 6 y12 +12y10 +54y8 +112y6 +105y4 +36y2 +1

Number Field 7 y16 + 16y14 + 104y12 + 352y10 + 660y8 +

672y6 + 336y4 + 64y2 + 2
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Number Field 8 y16 + 16y14 + 105y12 + 364y10 + 714y8 +

784y6 + 440y4 + 96y2 + 1

Number Field 9 y16 + 16y14 + 104y12 + 352y10 + 659y8 +

664y6 + 316y4 + 48y2 + 1

Number Field 10 y16+15y14+91y12+286y10+495y8+462y6+

210y4 + 36y2 + 1

Number Field 11 y16 + 16y14 + 104y12 + 352y10 + 660y8 +

672y6 + 336y4 + 64y2 + 2

Number Field 12 y18 + 17y16 + 120y14 + 455y12 + 1001y10 +

1287y8 + 924y6 + 330y4 + 45y2 + 1

Number Field 13 y18 + 18y16 + 135y14 + 546y12 + 1287y10 +

1782y8 + 1386y6 + 540y4 + 81y2 + 1

Number Field 14 y20 + 21y18 + 188y16 + 934y14 + 2806y12 +

5202y10+5809y8+3629y6+1090y4+120y2+

1

Number Field 15 y20 + 20y18 + 170y16 + 800y14 + 2275y12 +

4003y10+4280y8+2605y6+775y4+75y2+1

Number Field 16 y20 + 20y18 + 169y16 + 784y14 + 2172y12 +

3664y10+3683y8+2072y6+575y4+60y2+1
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Number Field 1

Prime Modulus σ-value Success Ratio

89 0.001 successes: 19/20

89 0.01 successes: 20/20

89 0.2 successes: 20/20

89 0.5 successes: 20/20

89 0.5 successes: 19/20

89 1 successes: 20/20

89 2 successes: 20/20

89 3 successes: 17/20

89 4 successes: 13/20

89 4.5 successes: 0/20

89 5 successes: 0/20

109 0.001 successes: 0/20

109 0.01 successes: 0/20

109 0.2 successes: 0/20

109 0.5 successes: 0/20

109 0.75 successes: 0/20

109 2 successes: 0/20

109 3 successes: 0/20

109 4 successes: 0/20

109 5 successes: 0/20

197 0.5 successes: 0/20
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197 2 successes: 0/20

197 3 successes: 0/20

197 4 successes: 0/20

197 5 successes: 0/20

241 0.5 successes: 0/20

241 2 successes: 0/20

241 3 successes: 0/20

617 0.001 successes: 0/20

617 0.01 successes: 0/20

617 0.2 successes: 0/20

661 0.001 successes: 0/1

661 0.01 successes: 0/1

661 0.2 successes: 0/1

661 0.5 successes: 0/1

661 0.75 successes: 0/1

Number Field 2

Prime Modulus σ-value Success Ratio

53 0.001 successes: 0/1

53 0.01 successes: 0/1

53 0.2 successes: 0/1

53 0.5 successes: 0/1

53 0.75 successes: 0/1

79 0.001 successes: 0/1
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79 0.01 successes: 0/1

79 0.2 successes: 0/1

79 0.5 successes: 0/1

79 0.75 successes: 0/1

Number Field 3

Prime Modulus σ-value Success Ratio

53 0.5 successes: 0/20

53 2 successes: 0/20

53 3 successes: 0/20

53 4 successes: 0/20

53 5 successes: 0/20

157 0.5 successes: 0/20

157 2 successes: 0/20

157 3 successes: 0/20

157 4 successes: 0/20

157 5 successes: 0/20

Number Field 4

Prime Modulus σ-value Success Ratio

41 0.5 successes: 0/20

41 2 successes: 0/20

41 3 successes: 0/20

41 4 successes: 0/20
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41 5 successes: 0/20

293 0.5 successes: 0/20

293 2 successes: 0/20

293 3 successes: 0/20

293 4 successes: 0/20

293 5 successes: 0/20

Number Field 5

Prime Modulus σ-value Success Ratio

83 0.001 successes: 0/1

83 0.01 successes: 0/1

83 0.2 successes: 0/1

83 0.5 successes: 0/1

83 0.75 successes: 0/1

113 0.001 successes: 0/1

113 0.01 successes: 0/1

113 0.2 successes: 0/1

113 0.5 successes: 0/1

113 0.75 successes: 0/1

449 0.001 successes: 0/1

449 0.01 successes: 0/1

449 0.2 successes: 0/1

449 0.5 successes: 0/1

449 0.75 successes: 0/1
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587 0.001 successes: 0/1

Number Field 6

Prime Modulus σ-value Success Ratio

73 0.5 successes: 0/20

73 2 successes: 0/20

73 3 successes: 0/20

73 4 successes: 0/20

73 5 successes: 0/20

107 0.001 successes: 20/20

107 0.01 successes: 20/20

107 0.2 successes: 20/20

107 0.5 successes: 20/20

107 1 successes: 20/20

107 2 successes: 20/20

107 3 successes: 19/20

107 4 successes: 17/20

107 4.5 successes: 8/20

107 5 successes: 0/20

Number Field 7

Prime Modulus σ-value Success Ratio

31 1 successes: 0/1

193 1 successes: 0/1
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Number Field 8

Prime Modulus σ-value Success Ratio

59 1 successes: 0/1

179 1 successes: 0/1

Number Field 9

Prime Modulus σ-value Success Ratio

199 0.001 successes: 0/1

199 0.01 successes: 0/1

199 0.2 successes: 0/1

199 0.5 successes: 0/1

199 0.75 successes: 0/1

241 0.001 successes: 0/1

241 0.01 successes: 0/1

241 0.2 successes: 0/1

Number Field 10

Prime Modulus σ-value Success Ratio

101 1 successes: 0/1

137 1 successes: 0/1

Number Field 11

Prime Modulus σ-value Success Ratio

31 0.5 successes: 0/20
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31 2 successes: 0/20

31 3 successes: 0/20

31 4 successes: 0/20

31 5 successes: 0/20

47 1 successes: 0/1

97 1 successes: 0/1

193 0.5 successes: 0/20

Number Field 12

Prime Modulus σ-value Success Ratio

37 2 successes: 19/20

37 3 successes: 18/20

37 4 successes: 15/20

37 4.5 successes: 1/20

37 5 successes: 0/20

113 2 successes: 19/20

113 3 successes: 19/20

113 4 successes: 17/20

113 4.5 successes: 14/20

113 5 successes: 0/20

Number Field 13

Prime Modulus σ-value Success Ratio

53 0.001 successes: 20/20
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53 0.01 successes: 20/20

53 0.2 successes: 20/20

53 0.5 successes: 20/20

53 1 successes: 20/20

53 2 successes: 20/20

53 3 successes: 18/20

53 4 successes: 20/20

53 4.5 successes: 17/20

53 5 successes: 0/20

109 0.001 successes: 20/20

109 0.01 successes: 20/20

109 0.2 successes: 20/20

109 0.5 successes: 20/20

109 1 successes: 20/20

109 2 successes: 20/20

109 3 successes: 20/20

109 4 successes: 18/20

109 4.5 successes: 20/20

109 5 successes: 7/20

269 0.01 successes: 0/1

269 1 successes: 0/1

269 2 successes: 0/1

269 5 successes: 0/1

433 0.01 successes: 0/1
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433 1 successes: 0/1

Number Field 14

Prime Modulus σ-value Success Ratio

197 1 successes: 0/1

397 1 successes: 0/1

Number Field 15

Prime Modulus σ-value Success Ratio

101 1 successes: 0/1

149 1 successes: 0/1

Number Field 16

Prime Modulus σ-value Success Ratio

43 0.001 successes: 20/20

43 0.01 successes: 20/20

43 0.2 successes: 20/20

43 0.5 successes: 20/20

43 1 successes: 20/20

43 2 successes: 20/20

43 3 successes: 18/20

43 4 successes: 19/20

43 4.5 successes: 16/20

43 5 successes: 13/20
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89 1 successes: 0/1

89 2 successes: 0/1

89 5 successes: 0/1
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