Math 295 - Spring 2020 Homework 8

This homework is due on Wednesday, March 4. All problems are adapted from Munkres's *Topology*.

For the first two problems you will need the following definition: Let X be a topological space and $A \subset X$ be a subspace. We define the *boundary* of A by the equation

$$\operatorname{Bd} A = \overline{A} \cap \overline{(X - A)}.$$

1. (a) Show that

$$\operatorname{Int} A \cap \operatorname{Bd} A = \emptyset,$$

where $\operatorname{Int} A$ is the interior of A.

(b) Show that

$$\overline{A} = \operatorname{Int} A \cup \operatorname{Bd} A.$$

- (c) Show that $\operatorname{Bd} A = \emptyset$ if and only if A is both open and closed.
- (d) Show that U is open if and only if $\operatorname{Bd} U = \overline{U} U$.
- (e) Show that if U is open, then $U \subset \operatorname{Int}(\overline{U})$. Prove that the containment is not an equality in general by showing that if $U = (0, 1) \cup (1, 2) \subset \mathbb{R}$ (where \mathbb{R} has the standard topology), then $U \neq \operatorname{Int}(\overline{U})$.
- 2. Find the boundary and interior of the following subsets of \mathbb{R}^2 , where \mathbb{R} has the standard topology, and \mathbb{R}^2 has the product topology:
 - (a) $A = \{x \times y \mid y = 0\}$
 - (b) $B = \{x \times y \mid x > 0 \text{ and } y \neq 0\}$
- 3. Suppose that $f: X \to Y$ is continuous. If x is a limit point of the subset A of X, is it necessarily true that f(x) is a limit point of f(A)? To support your answer, either prove that this statement is true, or give a counterexample.

For the last two problems you will need the following definition: Let $F: X \times Y \to Z$, where X, Y and Z are topological spaces and $X \times Y$ has the product topology. We say that F is continuous in each variable separately if for each $y_0 \in Y$, the function $h: X \to Z$ given by $h(x) = F(x \times y_0)$ is continuous, and for each $x_0 \in X$, the function $k: Y \to Z$ given by $k(y) = F(x_0 \times y)$ is continuous.

4. Let $F: X \times Y \to Z$, with X, Y, Z and $X \times Y$ as above. Show that if F is continuous, then F is continuous in each variable separately.

5. Consider the function $F \colon \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, where \mathbb{R} has the standard topology and $\mathbb{R} \times \mathbb{R}$ has the product topology, given by

$$F(x \times y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } x \times y \neq 0 \times 0, \\ 0 & \text{if } x \times y = 0 \times 0. \end{cases}$$

- (a) Show that F is continuous is each variable separately.
- (b) Compute the function $g \colon \mathbb{R} \to \mathbb{R}$ given by $g(x) = F(x \times x)$.
- (c) Show that F is not continuous.

Extra problem for graduate credit:

1. Let X be a topological space and $A \subset X$ be a subspace. Let $f: A \to Y$ be continuous, and Y be Hausdorff. Show that if f may be extended to a continuous function $g: \overline{A} \to Y$, then g is uniquely determined by f.