Math 295 - Spring 2020
Homework 8

This homework is due on Wednesday, March 4. All problems are adapted from Munkres's Topology.

For the first two problems you will need the following definition: Let X be a topological space and $A \subset X$ be a subspace. We define the boundary of A by the equation

$$
\operatorname{Bd} A=\bar{A} \cap \overline{(X-A)} .
$$

1. (a) Show that

$$
\operatorname{Int} A \cap \operatorname{Bd} A=\varnothing \text {, }
$$

where $\operatorname{Int} A$ is the interior of A.
(b) Show that

$$
\bar{A}=\operatorname{Int} A \cup \operatorname{Bd} A .
$$

(c) Show that $\operatorname{Bd} A=\varnothing$ if and only if A is both open and closed.
(d) Show that U is open if and only if $\operatorname{Bd} U=\bar{U}-U$.
(e) Show that if U is open, then $U \subset \operatorname{Int}(\bar{U})$. Prove that the containment is not an equality in general by showing that if $U=(0,1) \cup(1,2) \subset \mathbb{R}$ (where \mathbb{R} has the standard topology), then $U \neq \operatorname{Int}(\bar{U})$.
2. Find the boundary and interior of the following subsets of \mathbb{R}^{2}, where \mathbb{R} has the standard topology, and \mathbb{R}^{2} has the product topology:
(a) $A=\{x \times y \mid y=0\}$
(b) $B=\{x \times y \mid x>0$ and $y \neq 0\}$
3. Suppose that $f: X \rightarrow Y$ is continuous. If x is a limit point of the subset A of X, is it necessarily true that $f(x)$ is a limit point of $f(A)$? To support your answer, either prove that this statement is true, or give a counterexample.

For the last two problems you will need the following definition: Let $F: X \times Y \rightarrow Z$, where X, Y and Z are topological spaces and $X \times Y$ has the product topology. We say that F is continuous in each variable separately if for each $y_{0} \in Y$, the function $h: X \rightarrow Z$ given by $h(x)=F\left(x \times y_{0}\right)$ is continuous, and for each $x_{0} \in X$, the function $k: Y \rightarrow Z$ given by $k(y)=F\left(x_{0} \times y\right)$ is continuous.
4. Let $F: X \times Y \rightarrow Z$, with X, Y, Z and $X \times Y$ as above. Show that if F is continuous, then F is continuous in each variable separately.
5. Consider the function $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, where \mathbb{R} has the standard topology and $\mathbb{R} \times \mathbb{R}$ has the product topology, given by

$$
F(x \times y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if } x \times y \neq 0 \times 0 \\ 0 & \text { if } x \times y=0 \times 0\end{cases}
$$

(a) Show that F is continuous is each variable separately.
(b) Compute the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=F(x \times x)$.
(c) Show that F is not continuous.

Extra problem for graduate credit:

1. Let X be a topological space and $A \subset X$ be a subspace. Let $f: A \rightarrow Y$ be continuous, and Y be Hausdorff. Show that if f may be extended to a continuous function $g: \bar{A} \rightarrow$ Y, then g is uniquely determined by f.
