Introduction to Cryptography

PCMI 2022 - Undergraduate Summer School

Recall we write $f \subset g$ if $\left| \frac{f}{g} \right|$ is bounded as $k \to \infty$

f grows polynomially if $\exists a,b>0$ with $k^a < c + c < k^b$ f grows exponentially if $\exists a,b>0$ with

2 << f << 2bk

.f grows subexponentially if 4a,b>0 $k^{9} < c + < c 2^{bk}$

Example:
$$f(k) = 2^{\sqrt{k}}$$

Definition An algorithm is fast if the number of steps, as a function of the size of the input, grows polynomially.

A problem is easy if the fastest known alg to solve it is fast.

Smilarly An alg is slow if # of steps grows Expenentialm known alg to Problem is hard if the best solve it is slow. What if # of steps grows subexponentially?

still (kind of) hand.

Given G= < 9>, h + G, find x with 05×5 #G such that $h=q^{\times}$ (think: X=loggh) Depending on the specific group G, this problem can be hard.

Recall the DLP

Today: Assume we do have a cyclic group G such that

· multiplication and inversion in G is fast

 $(g_1h) \mapsto gh$

• but the DLP is hard

Then: $g_i x \mapsto h = g^x$ tast but $g_i h \mapsto x = \log_g h$

 $g \mapsto g^{-1}$

Own set up $A \longrightarrow B$

(1) B has to generate keys to receive messages

2) A can encrypt a message

(3) B can decrypt the message

Elganal key generation

B chooses G with known generator g

1. B generates a random secret number x (this is the secret key)

2. B computes h=g^
the public key is (G,g,h)

Elgamal encryption

Suppose that 19 wants to send a message meG to B.

1. A generates a secret random number y.

2. A computes 2 ciphentexts
$$C_1 = 9^{y} \qquad C_2 = m \cdot h^{y} \qquad (9^{y})^{x} = h^{y}$$

3. y is thrown out, (C1,C2) made public

Elgamal decryption

When B receives C, and C2

$$C_{1}^{-x} \cdot C_{2} = M.$$

$$C_{1}^{-x} = (C_{1}^{x})^{-1}$$

 $c_1 = g^y$, $c_2 = m \cdot h^y$ $h = g^x$ Attacking Elgamal . Certainly, solving the DLP is enough to break the encryption · Actually "less" is necessary: It suffices to Solve the Diffie-Hellman problem

Given $G = \langle g \rangle$, g, g^x, g^y Compute $g^x y$ Because we don't have a better way to solve DHP, we will try to solve the DLP.

To compute the "speed" of our solution, need -o know the size of the input.

he size of #G #G Input: group G Size of the input $k \approx log(\#G)$

Baby steps, giant steps due to Shanks
Best for generic group

That's all for now!