Fully homomorphic encryption PCMI 2022 Undergraduate Summer School Lecture 9

Christelle Vincent

University of Vermont

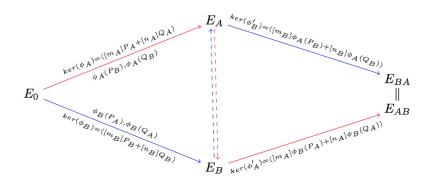
August 1, 2022

Breaking news!!

SIDH/SIKE is broken as it stands!!

(Castryck-Decru, preliminary report posted on Saturday)

SIDH in one slide



Fully homomorphic encryption PCMI 2022 Undergraduate Summer School Lecture 9

Christelle Vincent

University of Vermont

August 1, 2022

A dream from 1978

A public key cipher such that

- for any function f, and
- ullet access only to encryptions $\operatorname{Enc}(m_1),\operatorname{Enc}(m_2),\ldots,\operatorname{Enc}(m_t)$

we can compute an encryption of $f(m_1, m_2, \ldots, m_t)$.

Applications of FHE

- Query/search on encrypted database
- Private query/search on database
- Analysis of/machine learning on private data

The punchline

Gentry came up with a construction in 2009 based on RLWE.

Homomorphic encryption

A homomorphic cipher allows one operation on ciphertexts.

Usually this is + or \times on the integers (modulo N).

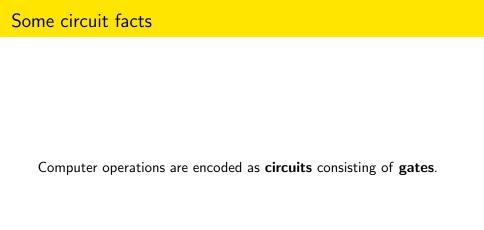
Homomorphic encryption example: RSA

```
RSA encryption: c \equiv m^e \pmod{N}

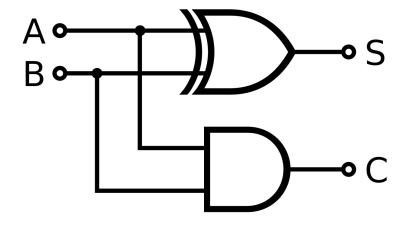
If c_i \equiv m_i^e \pmod{N} and m \equiv m_1 m_2 \pmod{N}, then c_1 c_2 \equiv m_1^e m_2^e \equiv m^e \equiv c \pmod{N}.
```

Fully homomorphic encryption

A **fully homomorphic** cipher allows arbitrary operations on ciphertexts.



Example: bit addition with carry



Truth tables

Gates/programs can be expressed as **truth tables**.

Input	Output		Input	Output
00	0		00	0
01	1		01	0
10	1		10	0
11	0		11	1
XOR gate (sum)			AND gate (carry)	

Christelle Vincent

Fully homomorphic encryption

Universal gates

A set of gates is **functionally complete** if any truth table can be expressed with these gates.

One functionally complete set

The gates { AND, NOT } are enough to express anything.

	Input	Output	
	00	0	Input
	01	0	0
	10	0	1
11 1		1	N
	AND		

Output

Fully homomorphic encryption, again

It used to mean "respects + and \times ."

Now can also respect just one universal gate, like NAND or NOR.

Main issue

Known constructions add **noise** to the ciphertext for security.

Operations increase the noise.

Somewhat homomorphic encryption

A cipher that respects a certain number of + and \times is called **somewhat homomorphic**.

One answer

Restrict how many operations can be done: **leveled fully homomorphic encryption**.

Gentry's idea: bootstrapping

If the decryption circuit has N operations, build a cipher that can handle at least N+1 operations.

Gentry's analogy: Alice's jewelry store

Alice does not trust her employees, so gets lockboxes with gloves:

Gentry's analogy: Alice's jewelry store

Unfortunately, the gloves get stiff with use.

Thankfully, the boxes have a **one-way insertion slot**, and are stretchy enough so one box can be **put inside another**.

Gentry's solution: Alice's jewelry store

Several boxes, and the *i*th box contains the key of the (i-1)st box.

Work in box i-1 until almost stiff, put inside box i, unlock, work in box i until almost stiff, and so on.

Gentry's solution: FHE

Generate enough pairs (sk_i, pk_i) , and use pk_i to encrypt sk_{i-1} .

When noise gets too big, "recrypt" ciphertext with next set of keys.

Recryption example

Let D be the decryption circuit: If c is an encryption of m under pk then

$$D(sk, c) = m.$$

Recryption example

Let

- c₁ encrypt m under pk₁,
- \bullet $\overline{\mathtt{sk}_1}$ encrypt \mathtt{sk}_1 under $\mathtt{pk}_2,$ and
- $\overline{c_1}$ be an encryption of c_1 under pk_2 .

Then $D(\overline{\operatorname{sk}_1},\overline{c_1})$ is m encrypted under pk_2

Consequences for algorithms

- Must specify size of output of the circuit
- No random access memory
- Develop low depth algorithms

Thank you!