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Abstract

We describe a very simple “somewhat homomorphic” encryption scheme using only elemen-
tary modular arithmetic, and use Gentry’s techniques to convert it into a fully homomorphic
scheme. Compared to Gentry’s construction, our somewhat homomorphic scheme merely uses
addition and multiplication over the integers rather than working with ideal lattices over a
polynomial ring. The main appeal of our approach is the conceptual simplicity.

We reduce the security of our somewhat homomorphic scheme to finding an approximate
integer gcd – i.e., given a list of integers that are near-multiples of a hidden integer, output that
hidden integer. We investigate the hardness of this task, building on earlier work of Howgrave-
Graham.

1 Introduction

What is the simplest encryption scheme for which one can hope to achieve security? The Caesar
cipher is simple, but not secure. We believe that conventional public-key encryption schemes with
modular exponentiations are secure, but modular exponentiation is not a very simple operation. If
we were to forget our current schemes and start from scratch, perhaps something like the following
scheme would be a good candidate for a simple symmetric encryption scheme:

KeyGen: The key is an odd integer, chosen from some interval p ∈ [2η−1, 2η).

Encrypt(p, m): To encrypt a bit m ∈ {0, 1}, set the ciphertext as an integer whose residue mod p
has the same parity as the plaintext. Namely, set c = pq + 2r + m, where the integers q, r
are chosen at random in some other prescribed intervals, such that 2r is smaller than p/2 in
absolute value.

Decrypt(p, c): Output (c mod p) mod 2.

When the noise r is sufficiently smaller than the secret key p, this simple encryption scheme
turns out to be “somewhat homomorphic” in the sense of [6] – namely, it can be used to evaluate
low-degree polynomials over encrypted data. Moreover, with a judicious choice of parameters (say
r ≈ 2

√
η and q ≈ 2η3

), this simple scheme may even be secure!
Specifically, we reduce the security of the scheme to the hardness of the approximate integer

greatest common divisors (approximate GCD) problem which, roughly speaking, says that it is
hard to recover p given the xi’s. This problem, for the case of two xi’s, was analyzed by Howgrave-
Graham [11]. Our parameters – in particular, the large size of the qi’s – are designed to avoid
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a generalized version of his attack (as well as various other attack avenues, such as solving the
associated simultaneous Diophantine approximation problem).

So far we only described a symmetric scheme, but turning it into a public key encryption scheme
is easy: The public key consists of many “encryptions of zero”, namely integers xi = qi · p + 2ri

where qi, ri are chosen from the same prescribed intervals as above. Then to encrypt a bit m, the
ciphertext is essentially set as m plus a subset sum of the xi’s.

As described, the scheme supports a limited number of additions and multiplications over
encrypted bits. However, it is easy to see that the scheme is not fully homomorphic: as-is, it
cannot evaluate high-degree polynomials over the encrypted data. However, we show in this work
that this simple scheme is amenable to Gentry’s “blueprint” for constructing a fully homomorphic
scheme out of certain somewhat homomorphic schemes [7]. Namely we can “squash the decryption
circuit” to get a bootstrappable scheme, and then invoke Gentry’s bootstrapping theorem to obtain
a fully homomorphic public-key encryption scheme.

We stress that our main motivation is conceptual simplicity – namely, to demonstrate that
even something as complex as fully homomorphic encryption can be achieved using “elementary”
techniques.

1.1 Prior Work

Variants of the simple scheme that we described above have appeared in prior work, but the full
potential of their homomorphic properties was never realized. Here, we discuss two of these results,
and relate them to the current work.

First, in a discussion thread on the cypherpunks mailing list from 2000, Bram Cohen proposed a
public key encryption scheme [4] that is quite similar to the scheme above. Secondly, in 2008, Levieil
and Naccache applied the same general technique to construct what they called an “Insecure and
Clumsy” Cryptographic Test Correction scheme, and used the additive homomorphic properties
of the scheme to prevent students from cheating on their exams [17, Sec. 3]. Both these works
appeared prior to the breakthrough result of Gentry in 2009 that showed the first fully homomorphic
encryption scheme, and as such, do not observe or utilize the multiplicative homomorphism that
the scheme could support. We point out the two main distinctions of our work below.

1. First, the security analysis in these prior works was informal, and concrete parameters were
either not set at all, or set to trivially breakable values. The scheme in [17] is trivially broken
when considered as a cryptographic scheme, irrespective of the choice of parameters. This is
justified in their case since the adversary model they considered is very weak.

In fact, prior to our work there was widespread belief in the cryptographic community that
schemes of this form are inherently insecure, due to the attacks that we describe in Section 5.
Hence, one of the contributions of our work is to point out that with an appropriate choice
of parameters, this simple scheme can be made to resist all known attacks.

2. Second, and more importantly, neither of the works mentioned above even considered mul-
tiplicative homomorphism, and specific instantiations (when given) did not support even a
single multiplication. Thus, another contribution of this work is to observe that not only can
this scheme made to support multiplications, but it can be used within Gentry’s blueprint to
construct a fully homomorphic encryption scheme.
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3. Finally, we exhibit a search-to-decision reduction which shows that the semantic security of
the scheme above can be based on a well-defined search problem, namely the approximate
GCD problem (see Section 4 for more details).

A third cryptosystem which is superficially similar to ours is Regev’s first encryption scheme [22]
based on the unique shortest vector problem. In fact, a slight variation of Regev’s scheme can be
described by exactly the same formula as ours, Enc(p, m) = qp + 2r + m. One major difference
between these schemes is that the secret key p in our scheme is an integer, whereas in Regev’s
scheme, the secret key is an integral fraction of the domain size (i.e., p = N/h for a public N and
a secret h). A consequence of this difference is that Regev’s scheme does not offer multiplicative
homomorphism. Another important difference is that our choice of parameters is much more
aggressive than Regev’s. Unfortunately, this means that Regev’s worst-case to average-case security
reductions from [22] do not seem to apply to our scheme.

2 Preliminaries

Below we usually denote parameters by Greek letters (e.g., η, γ, τ , etc.), with λ always denoting
the security parameter. Real numbers and integers are denoted by lowercase English letters (p, q,
x, y, etc.). All logarithms in the text are base-2 unless stated otherwise.

For a real number z, we denote by ⌈z⌉, ⌊z⌋, ⌊z⌉ the rounding of a up, down, or to the nearest
integer. Namely, these are the unique integers in the half open intervals [z, z + 1), (z − 1, z], and
(z − 1

2 , z + 1
2 ], respectively.

For a real number z and an integer p, we use qp(z) and rp(z) to denote the quotient and

remainder of z with respect to p, namely qp(z)
def
= ⌊z/p⌉ and rp(z)

def
= z − qp(z) · p. (Note that

rp(z) ∈ (−p/2, p/2].) We also denote the remainder by [z]p or (z mod p), we use these three
notations interchangeably throughout the paper.

A family H of hash functions from X to Y , both finite sets, is said to be 2-universal if for all
distinct x, x′ ∈ X, Pr

h
R←H[h(x) = h(x′)] = 1/|Y |. A distribution D is ǫ-uniform if its statistical

distance from the uniform distribution is at most ǫ, where the statistical difference between two
distributions D1, D2 over a finite domain X is 1

2

∑

x∈X |D1(x)−D2(x)|.

Lemma 2.1 (Simplified Leftover Hash Lemma [10]). Let H be a family of 2-universal hash functions

from X to Y . Suppose that h
R← H and x

R← X are chosen uniformly and independently. Then,
(h, h(x)) is 1

2

√

|Y |/|X|-uniform over H× Y .

2.1 Homomorphic Encryption

Our definitions are adapted from Gentry [7]. Below we only consider encryption schemes that are
homomorphic with respect to boolean circuits consisting of gates for addition and multiplication
mod 2. (Considering only bit operations also means that the plaintext space of the encryption
schemes that we consider is limited to {0, 1}.) See the works of Ishai and Paskin [12] for a more
general definitional treatment of homomorphic encryption with respect to other forms of “pro-
grams.”

A homomorphic public key encryption scheme E has four algorithms: the usual KeyGen, Encrypt,
and Decrypt, and an additional algorithm Evaluate. The algorithm Evaluate takes as input a public
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key pk, a circuit C, a tuple of ciphertexts ~c = 〈c1, . . . , ct〉 (one for every input bit of C), and outputs
another ciphertext c.

Definition 2.2 (Correct Homomorphic Decryption). The scheme E = (KeyGen, Encrypt, Decrypt,
Evaluate) is correct for a given t-input circuit C if, for any key-pair (sk, pk) output by KeyGen(λ),
any t plaintext bits m1, . . . , mt, and any ciphertexts ~c = 〈c1, . . . , ct〉 with ci ← EncryptE(pk, mi), it
is the case that:

Decrypt (sk, Evaluate(pk, C,~c)) = C(m1, . . . , mt)

Definition 2.3 (Homomorphic Encryption). The scheme E = (KeyGen, Encrypt, Decrypt, Evaluate)
is homomorphic for a class C of circuits1 if it is correct for all circuits C ∈ C. E is fully homomorphic
if it is correct for all boolean circuits.

The semantic security of a homomorphic encryption scheme is defined in the usual way [9],
without reference to the Evaluate algorithm. (Indeed Evaluate is a public algorithm with no secrets.)

It is clear that as defined above, fully homomorphic encryption can be trivially realized from
any secure encryption scheme, by an algorithm Evaluate that simply attaches a description of the
circuit C to the ciphertext tuple, and a Decrypt procedure that first decrypts all the ciphertexts and
then evaluates C on the corresponding plaintext bits. Two properties of homomorphic encryption
that rule out this trivial solution are circuit-privacy and compactness.

Circuit privacy roughly means that the ciphertext generated by Evaluate does not reveal any-
thing about the circuit that it evaluates beyond the output value of that circuit, even for someone
who knows the secret key. We discuss circuit privacy in Appendix C. It is folklore that circuit-
private fully-homomorphic encryption can be realized using Yao’s “garbled circuits” [23, 18] and a
two-flow oblivious transfer protocol. (This construction is similar to the trivial solution from above,
essentially it replaces the plaintext circuit with a garbled circuit.) Hence the “real challenge” in
constructing fully homomorphic encryption comes from the compactness property, which essentially
means that the size of the ciphertext that Evaluate generates does not depend on the size of the
circuit C.

Definition 2.4 (Compact Homomorphic Encryption). The scheme E = (KeyGen, Encrypt, Decrypt,
Evaluate) is compact if there exists a fixed polynomial bound b(λ) so that for any key-pair (sk, pk)
output by KeyGen(λ), any circuit C and any sequence of ciphertext ~c = 〈c1, . . . , ct〉 that was
generated with respect to pk, the size of the ciphertext Evaluate(pk, C,~c) is not more than b(λ) bits
(independently of the size of C).

2.2 Bootstrappable Encryption

Following Gentry [7], we construct homomorphic encryption for circuits of any depth from one that
is capable of evaluating just a little more than its own decryption circuit.

Definition 2.5 (Augmented Decryption Circuits). Let E = (KeyGen, Encrypt, Decrypt, Evaluate)
be an encryption scheme, where decryption is implemented by a circuit that depends only on the
security parameter.2

1Formally, C is an ensemble, parametrized by the security parameter.
2This in particular means that for a fixed value of the security parameter, the size of the secret key is always the

same, and similarly all the ciphertexts that can be decrypted have the same size.
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For a given value of the security parameter λ, the set of augmented decryption circuits consists
of two circuits, both take as input a secret key and two ciphertexts: One circuit decrypts both
ciphertexts and adds the resulting plaintext bits mod 2, the other decrypts both ciphertexts and
multiplies the resulting plaintext bits mod 2. We denote this set by DE(λ).

Definition 2.6 (Bootstrappable Encryption). Let E = (KeyGen, Encrypt, Decrypt, Evaluate) be a
homomorphic encryption scheme, and for every value of the security parameter λ let CE(λ) be a
set of circuits with respect to which E is correct. We say that E is bootstrappable if DE(λ) ⊆ CE(λ)
holds for every λ.

Theorem 2.7 ([7]). There is an (efficient, explicit) transformation that given a description of a
bootstrappable scheme E and a parameter d = d(λ), outputs a description of another encryption
scheme E(d) such that:

1. E(d) is compact (in particular the Decrypt circuit in E(d) is identical to that in E), and

2. E(d) is homomorphic for all circuits of depth up to d.

Moreover, E(d) is semantically secure if E is: Any attack with advantage ε against E(d) can be
converted into an attack with similar complexity against E with advantage at least ε/ℓd , where ℓ
is the length of the secret key in E.

We also note that if the bootstrappable scheme E is “circular secure” then it can be converted
into a single compact fully-homomorphic encryption scheme E ′. See [7] for details.

3 A Somewhat Homomorphic Encryption Scheme

Parameters. The construction below has many parameters, controlling the number of integers
in the public key and the bit-length of the various integers. Specifically, we use the following four
parameters (all polynomial in the security parameter λ):

γ is the bit-length of the integers in the public key,

η is the bit-length of the secret key (which is the hidden approximate-gcd of all the public-key
integers),

ρ is the bit-length of the noise (i.e., the distance between the public key elements and the
nearest multiples of the secret key), and

τ is the number of integers in the public key.

These parameters must be set under the following constraints:

• ρ = ω(log λ), to protect against brute-force attacks on the noise;

• η ≥ ρ · Θ(λ log2 λ), in order to support homomorphism for deep enough circuits to evaluate
the “squashed decryption circuit” (cf. Sections 3.2 and 6.2);

• γ = ω(η2 log λ), to thwart various lattice-based attacks on the underlying approximate-gcd
problem (cf. Section 5);
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• τ ≥ γ + ω(log λ), in order to use the leftover hash lemma in the reduction to approximate
gcd (cf. Lemma 4.3).

We also use a secondary noise parameter ρ′ = ρ + ω(log λ). A convenient parameter set to keep in
mind is ρ = λ, ρ′ = 2λ, η = Õ(λ2), γ = Õ(λ5) and τ = γ + λ. (This setting results in a scheme
with complexity Õ(λ10).)

For a specific (η-bit) odd positive integer p, we use the following distribution over γ-bit integers:

Dγ,ρ(p) =
{

choose q
$← Z ∩ [0, 2γ/p), r

$← Z ∩ (−2ρ, 2ρ) : output x = pq + r
}

This distribution is clearly efficiently sampleable.

3.1 The Construction

KeyGen(λ). The secret key is an odd η-bit integer: p
$← (2Z + 1) ∩ [2η−1, 2η).

For the public key, sample xi
$← Dγ,ρ(p) for i = 0, . . . , τ . Relabel so that x0 is the largest.

Restart unless x0 is odd and rp(x0) is even. The public key is pk = 〈x0, x1, . . . , xτ 〉.

Encrypt(pk, m ∈ {0, 1}). Choose a random subset S ⊆ {1, 2, . . . , τ} and a random integer r in
(−2ρ′ , 2ρ′), and output c←

[

m + 2r + 2
∑

i∈S xi

]

x0

.

Evaluate(pk, C, c1, . . . , ct). Given the (binary) circuit CE with t inputs, and t ciphertexts ci, apply
the (integer) addition and multiplication gates of CE to the ciphertexts, performing all the
operations over the integers, and return the resulting integer.

Decrypt(sk, c). Output m′ ← (c mod p) mod 2.

Remark 3.1. Recall that (c mod p) = c− p · ⌊c/p⌉, and as p is odd we can instead decrypt using
the formula m′ ← [c− ⌊c/p⌉]2 = (c mod 2)⊕ (⌊c/p⌉ mod 2).

Remark 3.2. Originally, we described encryption as adding m to a random subset sum of “en-
cryptions of zero”. Indeed, the scheme can viewed this way. Let wi = [2xi]x0

for i = 1, . . . , τ .
Each wi, and also x0, is essentially an encryption of zero; its noise is even. Moreover, c =
m + 2r +

∑

i∈S wi − k · x0 for some integer k.

3.2 Correctness

Permitted Circuits and Polynomials. For a mod-2 arithmetic circuit (composed of mod-2
Add and Mult gates), we consider its generalization to the integers, i.e., the same circuits with
the Add and Mult gates applied to integers rather than to bits. Similar to Gentry [7], we define a
permitted circuit as one where for any α ≥ 1 and any set of integer inputs all less than 2α(ρ′+2)

in absolute value, it holds that the generalized circuit’s output has absolute value at most 2α(η−4).
Let CE denote the set of permitted circuits. Clearly, we have:

Lemma 3.3. The scheme from above is correct for CE .

Proof. The straightforward proof is in Appendix A.
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Remark 3.4. Since “fresh” ciphertexts output by Encrypt have noise at most 2ρ′+2, the ciphertext
output by Evaluate applied to a permitted circuit has noise at most 2η−4 < p/8. The bound
2η−2 < p/2 would suffice for correct decryption. But we will later use the fact that the noise remains
below p/8 in Section 6 to perform the decryption operation using a very shallow arithmetic circuit.

The definition of the set CE from above is rather indirect. In particular this definition does
not give a good picture of what CE “looks like”. By the triangle inequality, a k-fan-in Add gate
clearly increases the magnitude of the integers by at most a factor of k. However, a 2-fan-in Mult

gate may square the magnitude of the integers – i.e., double their bit-lengths. So, clearly, the main
bottleneck is the multiplicative depth of the circuit, or the degree of the multivariate polynomial
computed by the circuit. We have the following lemma.

Lemma 3.5. Let C be a boolean circuit with t inputs, and let C† be the associated integer circuit
(where boolean gates are replaced with integer operations). Let f(x1, . . . , xt) be the multivariate
polynomial computed by C†; let d be its degree. If |~f | · (2ρ′+2)d ≤ 2η−4 (where |~f | is the l1 norm of
the coefficient vector of f) then C ∈ CE .

In particular, E can handle f as long as

d ≤ η − 4− log |~f |
ρ′ + 2

(1)

Below we refer to polynomials that satisfy Equation (1) as permitted polynomials and we denote
by PE the set of permitted polynomials and by C(PE) the set of circuits that compute them. The
discussion above implies that C(PE) ⊆ CE .

Remark 3.6. For our purposes, we consider settings where log |~f | is small in relation to η, ρ′ =
ω(log λ) and t, τ ≤ λβ , and we need to support polynomials of degree up to αλ log2 λ (for some
constants α, β). Plugging these expressions in Equation (1), it is sufficient to set η = ρ′ ·Θ(λ log2 λ).

3.3 Variations and Optimizations

3.3.1 Modular-reduction during Evaluate.

Note that while Encrypt reduces the ciphertext modulo the public key element x0, we cannot do
the same in Evaluate. The reason is that after just one multiplication the ciphertext becomes much
larger than x0, so modular reduction will include a large multiple of x0 hence introducing intolerable
error.

To reduce the ciphertext size during Evaluate, we can add to the public key more elements of
the form x′i = q′ip + 2r′i where the r′i’s are chosen as usual from the interval (−2ρ, 2ρ) but the qi’s
are chosen much larger than for the other public key elements. Specifically, for i = 0, . . . γ, we set:

q′i
$← Z ∩ [2γ+i−1/p, 2γ+i/p), r′i

$← Z ∩ (−2ρ, 2ρ), x′i ← 2(q′i · p + r′i),

thus getting x′i ∈ [2γ+i, 2γ+i+1]. During Evaluate, every time we have a ciphertext that grows
beyond 2γ , we reduce it first modulo x′γ , then modulo x′γ−1, and so on all the way down to x′0, at
which point we again have a ciphertext of bit-length no more than γ.

Recall that a single operation at most doubles the bit-length of the ciphertext. Hence after
any one operation the ciphertext cannot be larger than 2x′γ , and therefore the sequence of modular
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reductions involves only small multiples of the x′i’s, which means that it only adds a small amount
of noise. (We note that in addition to smaller ciphertexts, this optimization also reduces the public
key size when we use the “decryption squashing” technique as described in Section 6.1.)

It is not clear to what extent adding these larger integers to the public key influences the security
of the scheme. It does change the specifics of the approximate-GCD assumption that we need to
make, but the same decision-to-search reduction from Section 4 still goes through.3 Also, we note
that having integers with these very large quotients does not seem to help in any of the attacks on
approximate-GCD that we considered.

Remark 3.7. Note that when using the original scheme without the optimization, homomorphic
evaluation of different circuits that compute the same polynomial would result in the exact same
output ciphertext (i.e., the polynomial applied to the input ciphertexts over the integers). This
is no longer true when using the size-reduction optimization, because of the additional modular
reduction steps. For example, evaluating the circuit “x1(x2 + x3)” is likely to yield a different
ciphertext than the circuit “x1x2 + x1x3.”

In principle, it is plausible that evaluating one circuit would yield a ciphertext with small enough
noise to be decrypted, while evaluating another circuit for the same polynomial will produce a ci-
phertext with too much noise. Adapting the “bootstrappability analysis” from Section 6.2 to the
optimized scheme, one would have to take into account not only the degree of the polynomial im-
plementing the decryption process but also the particular circuit that implements this polynomial.
It should not be hard to argue that the circuit in Section 6.2 does not introduce too much noise,
but the analysis is quite tedious and is omitted here.

3.3.2 An even slightly simpler scheme.

One variation of our scheme is to choose the integer x0 in the public key not as a near multiple
of p, but as an exact multiple. This choice allows reducing modulo x0 also during Evaluate, and
also simplifies the analysis from Section 6.2 and the decision-to-search reduction from Section 4.

Although the resulting approximate-GCD problem appears to be “clearly easier” (since the
attacker is given one multiple of p with no noise), we do not know of ant attack that works for this
“easier case” but not for the general case.

3.3.3 Ciphertext compression.

Even though the optimizations from above keep evaluated ciphertexts at the same length as original
ciphertexts, the size of these ciphertexts is still very large – θ̃(λ5) bits under our suggested param-
eters. We next show how to “compress”, or post-process the ciphertexts, down to (asymptotically)
the size of an RSA modulus, reducing the communication complexity of our scheme dramatically.

The price of this optimization, however, is that we cannot evaluate anything on these compressed
ciphertexts. Hence we can only use this compression technique on the final output ciphertexts, after
all applications of the Evaluate algorithm have been completed. (This technique also introduces
another hardness assumption, similar to the φ-hiding assumption of Cachin et al. [3].)

Roughly, we supplement the public key with the description of a group G and an element g ∈ G
whose order is a multiple of the secret key p. Then, given the ciphertext c from our scheme, the
compressed ciphertext is simply c∗ ← gc. Note that DLg(c

∗) = c (mod p), so decrypting is done

3Allowing this reduction to go through is the reason that the x′

i’s are set as even integers.
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by first computing y ← DLg(c
∗) mod p, and then m ← y mod 2. Correctness follows immediately

from the correctness of the original scheme.
To implement this idea, we need to choose the secret key p as a smooth number so that we

can compute (DLg(c
∗) mod p) on decryption. It seems sufficient to choose the secret key as a

product of random distinct λ2/ log λ small primes (say, all smaller than λ3). Also, we need to
ensure that publishing G, g does not violate the security of the scheme. This can be accomplished
by publishing an RSA modulus N such that p|φ(N) (and log N sufficiently larger than 4 log p),4

along with a random element g ∈R Z∗N , relying on a variant of the φ-hiding assumption [3]. Namely,
we assume that given two smooth numbers p1, p2 as above and given N such that one of the pi’s
divides φ(N), it is hard to determine which of the two pi’s divides φ(N). In Appendix D we describe
this optimization in more details, and provide a proof of security for it under this φ-hiding variant.

4 Security of the Somewhat Homomorphic Scheme

We reduce the security of the scheme from Section 3 to the hardness of the approximate-gcd
problem. Namely, given a set of integers x0, x1, . . . , xτ , all randomly chosen close to multiples of a
large integer p, find this “common near divisor” p.

On a high level, our reduction resembles classical hard-core-bit proofs in factoring-based cryp-
tography (e.g., Alexi et al. [1]): Fixing a randomly-chosen public key, we roughly show that an
adversary who can predict the encrypted bit in a random ciphertext under this public key can be
used to find the secret key (for this fixed public key). As in [1], we describe a random-self-reduction
and accuracy-amplification step that uses the promised adversary to get a reliable oracle for the
least-significant bit, and then a binary-GCD algorithm that uses that reliable oracle to find p.

The technical details, of course, are very different than in factoring-based cryptography. Perhaps
the main difference is that our random self-reduction entails a loss in parameters. Specifically, we
show that a noticeable advantage in guessing the encrypted bit in a random “high noise ciphertext”
– where the noise is ρ′ bits – can be converted into the ability to predict reliably the parity bit of
the quotient in an arbitrary “low noise integer” – where the noise is ρ bits. (Roughly, the reason
for this is that we need to add extra noise to “wipe out the traces” of the non-random noise in the
arbitrary input integer.)

The implication is that we can only reduce the security of our cryptosystem in the “high-noise
regime” to the hardness of approximate-gcd in the “low-noise regime.” Note that the difference
between “high noise” and “low noise” is rather small: only ω(log λ) bits.

4.1 Reduction to Approximate-GCD

The approximate-gcd problem is defined as follows:

Definition 4.1 (Approximate GCD). The (ρ, η, γ)-approximate-gcd problem is: given polynomi-
ally many samples from Dγ,ρ(p) for a randomly chosen η-bit odd integer p, output p.

Theorem 4.2. Fix the parameters (ρ, ρ′, η, γ, τ) as in the Somewhat Homomorphic Scheme from
Section 3 (all polynomial in the security parameter λ).

4The condition log N > 4 log p is needed, since otherwise we can use Coppersmith’s method [5] to break the
corresponding φ-hiding assumption.
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Any attack A with advantage ε on the encryption scheme can be converted into an algorithm B
for solving (ρ, η, γ)-approximate-gcd with success probability at least ε/2. The running time of B is
polynomial in the running time of A, and in λ and 1/ǫ.

Proof Recall that we use qp(z) and rp(z) to denote the quotient and remainder of z with respect
to p, hence z = qp(z) ·p+rp(z). Let A be an attacker against the scheme. Namely, A takes as input
a public key and a ciphertext (as produced by KeyGen and Encrypt of our scheme), and outputs the
correct plaintext bit with probability 1

2 + ǫ for some noticeable ǫ. (The probability is over KeyGen

and Encrypt, as well as the choice of the plaintext bit and the internal randomness of A.)
We use A to construct a solver B for approximate-gcd with parameters ρ, η, γ. For a randomly

chosen η-bit odd integer p, the solver B has access to as many samples from Dγ,ρ(p) as it needs,
and the goal is to find p.

Step 1: Creating a public key. The solver B begins by constructing a public key for the scheme.

B draws τ + 1 samples x0, . . . , xτ
$← Dγ,ρ(p). It relabels so that x0 is the largest. It restarts unless

x0 is odd. B then outputs a public key pk = 〈x0, x1, . . . , xτ 〉. Clearly, if rp(x0) happens to be even
then the distribution induced on the public key is identical to that of the scheme.

Step 2: A subroutine for high-accuracy LSB predictor. Next, B produces a sequence of
integers, and attempts to recover p by utilizing A to learn the least-significant bit of the quotients
of these integers with respect to p. For this, B uses the following subroutine:

Subroutine Learn-LSB(z, pk):

Input: z ∈ [0, 2γ) with |rp(z)| < 2ρ, a public key pk = 〈x0, x1, . . . , xτ 〉
Output: The least-significant-bit of qp(z)

1. For j = 1 to poly(λ)/ǫ do: // ǫ is the overall advantage of A
2. Choose noise rj

$← (−2ρ′ , 2ρ′), a bit mj
$← {0, 1}, and a random subset Sj ⊆R {1, . . . , τ}

3. Set cj ←
[

z + mj + 2rj + 2
∑

k∈Sj
xk

]

x0

4. Call A to get a prediction aj ← A(pk, cj)
5. Set bj ← aj ⊕ parity(z)⊕mj // bj should be the parity of qp(z)

6. Output the majority vote among the bj ’s.

In Lemma 4.3 we show that for all but a negligible fraction of the public keys generated by the
scheme, the “ciphertext” cj in line 3 is distributed almost identically to a valid encryption of the bit
[rp(z)]2⊕mj . Note also that since p is odd, we always have [qp(z)]2 = [rp(z)]2⊕parity(z). It follows
that if A has a noticeable advantage in guessing the encrypted bit under pk (and the conditions in
Lemma 4.3 are met), then Learn-LSB(z, pk) will return [qp(z)]2 with overwhelming probability.

Step 3: Binary GCD. Once we turned A into an oracle for the least-significant-bit of qp(z),
recovering p is rather straightforward. Perhaps the simplest way of doing it is using the binary
GCD algorithm [14]: Given any two integers z1 = qp(z1) · p + rp(z1) and z2 = qp(z2) · p + rp(z2)
(with rp(zi)≪ p), repeatedly apply the following process to them:

1. If z2 > z1 then swap them, z1 ↔ z2.

10



2. Use the oracle to learn the parity bit of both qp(z1) and qp(z2), denote bi = [qp(zi)]2.

3. If both qp(zi) are odd then replace z1 by z1 ← z1 − z2 and set b1 ← 0.

4. For each zi with bi = 0, replace zi by zi ← (zi − parity(zi))/2. (Note that zi − parity(zi) is
even, so the new zi is an integer.)

Observe that when p ≫ rp(zi), subtracting the parity bit does not change the quotient with
respect to p, only the remainder. That is, qp(zi − parity(zi)) = qp(zi). It follows that when we set
z′i ← (zi − parity(zi))/2 in line 4 (where we know that qp(zi) is even), we get

qp(z
′
i) = qp(zi)/2 and rp(z

′
i) =

(

rp(zi)− parity(zi)
)

/2.

We now show that the noise in z1, z2 never grows too large in this process. Clearly, setting z′i ←
(zi− parity(zi))/2 in line 4 we have |rp(z

′
i)| ≤ (|rp(zi)|+ 1)/2 ≤ |rp(zi)|. Moreover, when we replace

z1 by z′1 ← z1 − z2 in line 3 and then by z′′1 ← (z′1 − parity(z′1))/2 in line 4, we have

|rp(z
′′
1 )| = (|rp(z

′
1)− parity(z′1)|)/2 =

(

|rp(z1)− rp(z2)− parity(z′1)|
)

/2 ≤ max
{

|rp(z1)|, |rp(z2)|
}

Hence the rp(zi)’s never grow beyond the largest of the initial two, so we always have p≫ rp(zi).
This implies that the operations above correspond to the usual operations of the binary GCD

algorithm, applied to the qp(zi)’s. Hence after O(γ) iterations we will finally get two integers z′1, z
′
2

with z′2 = 0 and qp(z
′
1) being the odd part of GCD(qp(z1), qp(z2)) (for the two initial integers).

Step 4: Recovering p. To recover p, the solver B draws a pair of elements z∗1 , z
∗
2

$← Dγ,ρ(p) and
applies the binary-GCD algorithm to them. With probability at least π2/6 ≈ 0.6, the odd part of
GCD(qp(z

∗
1), qp(z

∗
2)) is one, which means that the procedure will output an element z̃ = 1 · p + r

with |r| ≤ 2ρ. (If this does not happen then B draws two new integers and tries again.)
Lastly B repeats the binary-GCD procedure from above using z1 = z∗1 and z2 = z̃, and the

sequence of parity bits of the qp(z1)’s in all the iterations spell out the binary representation of
qp(z

∗
1). Now B recovers p = ⌊z∗1/qp(z

∗
1)⌉.

Summary. We have shown that B can recover p given access to a reliable oracle for computing
[qp(z)]2 (for z’s with noise much smaller than p). It is left to analyze the probability (over B’s choice
of public key) with which the procedure Learn-LSB(z, pk) from above is indeed such a reliable oracle.

4.1.1 The Success Probability of B

Below we prove a simple technical lemma about the distribution of ciphertexts in our scheme. Recall
that conditioned on some probability-1

2 event in our reduction (i.e., qp(x0) is odd), the distribution
of the public key that B generates is identical to the correct distribution from the scheme. Let us
denote this probability-1

2 “good event” by G. In Lemma 4.3 we prove that for every secret key p
and for all but a negligible fraction of the public keys (as generated by KeyGen for the secret key p),
the procedure that B uses to generate ciphertexts in line 3 of the subroutine Learn-LSB produces
a distribution which is statistically close to the ciphertext distribution of the scheme. This lets us
analyze the success probability of B, as follows: Let P be the set of odd integers in [2η−1, 2η) for
which A has more than ε/2 advantage

P def
=
{

p ∈ [2η−1, 2η) : advantage(A) conditioned on sk = p is at least ε/2
}

11



A counting argument shows that the fraction of odd integers from [2η−1, 2η) that are in P is at
least ε/2. For a given p ∈ P, we similarly denote by PKp the set of public keys for which A has
advantage at least ε/4:

PKp
def
= {pk for p : advantage(A) conditioned on pk is at least ε/4}

Again, for every p ∈ P, the KeyGen algorithm (when using the secret key sk = p) must output
pk ∈ PKp with probability at least ε/4.

Consider now a single run of B when it is given access to Dγ,ρ(p) for some p ∈ P. With
probability 1/2 the “good event” G happens, in which case the public key that B produces is
negligibly close to the right distribution. Hence conditioned on G, B generates some pk ∈ PKp

with probability ε′ ≥ ε/4 − negl. Moreover, by Lemma 4.3, with probability ε′ − negl not only
is the public key in PKp, but also the ciphertext-generation that B uses in line 3 of Learn-LSB

“works” for this public key (meaning that the ciphertexts that it generates are chosen from almost
the right distribution). If that happens then A returns the right answer in line 4 of Learn-LSB with
probability ε/4−negl. As that subroutine calls A for poly(λ)/ε times and takes majority vote, it will
return the right answer with overwhelming probability, and B will recover the approximate-gcd p.

Thus, when the hidden secret is p ∈ P then B has probability at least 1/2 · (ε/4 − negl) of
recovering it in a single run. Repeating the algorithm B for (8/ǫ) · ω(log λ) times will therefore
recover such p’s with overwhelming probability. Hence we have a solver of complexity poly(λ, 1/ε)
that works with overwhelming probability for every p ∈ P, so the overall success probability of this
solver is at least the density of P, which is at least ε/2. This completes the proof of Theorem 4.2.

Lemma 4.3. Fix the parameters (ρ, ρ′, η, γ, τ), fix any sk = p, and let pk = 〈x0, . . . , xτ 〉 be chosen
at random as in the KeyGen of our scheme. For every integer x∗ ∈ [0, 2γ ] which is at most 2ρ away
from a multiple of p, consider the following distribution

Cpk(x
∗) =







S ⊆R {1, . . . , τ}, r
$← (−2ρ′ , 2ρ′) : output c′ ←

[

x∗ + 2r +
∑

i∈S

xi

]

x0







Then with overwhelming probability (over the choice of (sk, pk)), every distribution Cpk(x
∗) is

statistically close to to the distribution Encrypt(pk, m = [x∗]2) (up to a negligible statistical distance).

Proof. (sketch) Writing c′ = q′p + 2r′+ m, again the argument boils to separate arguments that q′

and r′ are distributed as in the scheme.
Regarding q′, we claim that in the scheme the value qp(c) of a ciphertext is uniform in (−q0/2, q0/2]

by the leftover hash lemma; since the summation used to generate c′ is as in the scheme, this implies
that the value q′ is also uniform in (−q0/2, q0/2]. This claim follows from Lemma 4.4 below. To
apply the lemma meaningfully – i.e., to ensure that the distribution is negligibly within uniform –
we need τ > log q0 + ω(log λ), as indicated in our parameter choices.

Regarding the noise r′, recall that we choose additional noise for the ciphertext in both the
scheme and the reduction, drawn from a distribution with magnitude much larger than the noise
of the public-key elements (by a super-polynomial factor). This added noise statistically drowns
whatever differences exist in the noise distribution due to the public key elements and the integer x∗.
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Lemma 4.4. Consider the following distribution. Set x1, . . . , xT
R← ZM uniformly and indepen-

dently, set s
R← {0, 1}T , and set xT+1 ←

∑T
i=1 si ·xi mod M . Then, (x1, . . . , xT , xT+1) is 1

2

√

M/2T -

uniform over Z
T+1
M .

Proof. Define a family H of hash functions from {0, 1}T to ZM as follows. The members h ∈ H
are associated to elements (h1, . . . , hT ) ∈ Z

T
M . For s ∈ {0, 1}T , h(s) is given by

∑T
i=1 si · hi ∈ ZM .

This family is clearly 2-universal. Therefore, by the leftover hash lemma (Lemma 2.1), (h, h(x)) is
1
2

√

M/2T -uniform over Z
T+1
M .

Note that Lemma 4.4 means in particular that for all but a 4
√

2T /M fraction of the choices of
x1, . . . , xT , the induced distribution over xT+1 is at most 4

√

2T /M away from uniform.

Remark 4.5. We point out that the reduction above (and therefore our scheme) can work with
distributions other than the uniform for the qi’s and ri’s. For the ri’s, all we need is that the
distribution is “smooth enough” so that taking any fixed number x and adding to it noise r with
variance ≫ x2 yields a distribution that is almost identical to the distribution of r itself. (In
particular we can use a Gaussian distribution for the ri’s, as is done in Regev’s scheme [22].)

For the qi’s all we need is that the distribution has high enough entropy to use the leftover hash
lemma.

5 Known Attacks

Consider the approximate-gcd instance {x0, . . . , xt} where xi = pqi + ri. In this section, we first
review known attacks on the approximate-gcd problem for two numbers (i.e., when t = 1) –
including brute-forcing the remainders, continued fractions, and Howgrave-Graham’s approximate
gcd algorithm [11]. Later, we consider attacks for arbitrarily large values of t – including lattice-
based algorithms for simultaneous Diophantine approximation [15], Nguyen and Stern’s orthogonal
lattice [20], and extensions of Coppersmith’s method to multivariate polynomials [5].

5.1 The Approximate GCD of Two Numbers

A simple brute-force attack is to try to guess r1 and r2, and verify the guess with a gcd computation.
Specifically, for r′1, r

′
2 ∈ (−2ρ, 2ρ), set

x′1 ← x1 − r′1 , x′2 ← x2 − r′2 , p′ ← gcd(x′1, x
′
2)

If p′ has η bits, output p′ as a possible solution. The solution p will definitely be found by this
technique, and for our parameter choices, where ρ is much smaller than η, the solution is likely to
be unique. The running time of the attack is approximately 22ρ.

A variant of the brute-force attack is to set x′1 as above, factor x′1, and, if there is an η-bit
factor p′, see whether p′ is an approximate divisor of x′2. Since in our parameters γ is substantially
greater than η, the attack should use a factoring algorithm whose performance depends primarily
on the size of the target factor rather than the size of the entire number being factored. For
example, Lenstra’s elliptic curve factoring algorithm [16] runs in time roughly exp(O(

√
η)) (with

only polynomial dependence on γ), thus resulting in overall attack complexity ≈ 2ρ+
√

η. The attack
time is less if the approximate gcd is known to be smooth, but still exponential in ρ.
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Continued fractions seem like a natural way to recover p from x1 and x2. Using continued
fractions, one obtains a sequence of integer pairs (ai, bi) such that |x1/x2 − ai/bi| < 1/b2

i . More-
over, every pair (s, t) such that |x1/x2 − s/t| < 1/2t2 is in the sequence. Since q1/q2 is a good
approximation of x1/x2, one may hope that it occurs as a pair in the sequence; if so, one recovers
p = ⌊x1/q1⌉. However, in our scheme, |x1/x2 − q1/q2| is not small enough to be recovered using
continued fractions. Specifically, we have

∣

∣

∣

∣

x1

x2
− q1

q2

∣

∣

∣

∣

=

∣

∣

∣

∣

q2r1 − q1r2

q2(pq2 + r2)

∣

∣

∣

∣

≈
∣

∣

∣

∣

q2r1 − q1r2

p

∣

∣

∣

∣

· 1

q2
2

where (q2r1 − q1r2)/p in the final term is likely to be much larger than 1. To describe the failure
of continued fractions another way, the mere fact that an approximant ai/bi is close to x1/x2 does
not mean that there exist r′1, r

′
2 ≪ p such that x1 = pai + r′1 and x2 = pbi + r′2 – i.e., the continued

fractions method is not constrained to output the kind of approximants that we need. See [11] for
a more detailed exposition of the continued fractions approach to approximate-gcd.

Howgrave-Graham [11] also gives a lattice attack on the two-element approximate-gcd problem
that is related to Coppersmith’s celebrated algorithm for finding small solutions to univariate and
bivariate modular equations [5]. For the case where x1 is exactly divisible by p, where his algorithm
performs slightly better, the attack recovers p when ρ/γ is smaller than (η/γ)2. The algorithm does
not degrade gracefully for ρ, η, γ that do not satisfy the constraint. Rather, in this case, the relevant
lattice may contain exponentially vectors unrelated to the approximate-gcd solution, so that lattice
reduction yields nothing useful.

5.2 The Approximate GCD of Many Numbers

Now, let us consider attacks – specifically, lattice attacks – for arbitrary t. First, note that the
rational numbers yi = xi/x0 are an instance of the simultaneous Diophantine approximation (SDA)
problem: indeed for all i it holds that xi

x0
= qi+si

q0
, where |si| ≈ 2ρ−η. We can therefore try to use

Lagarias’ algorithm for SDA [15], namely apply LLL to the (t + 1)-dimensional lattice L spanned
by the rows of the following matrix:

M =















2ρ x1 x2 . . . xt

−x0

−x0

. . .

−x0















Our target solution corresponds to a vector of length roughly 2γ+ρ−η
√

t + 1 – specifically,

~v = 〈q0, q1, . . . , qt〉 ·M = 〈q02
ρ, q0x1 − q1x0, . . . , q0xt − qtx0〉

=

〈

q02
ρ, x0q0(

x1

x0
− q1

q0
), . . . , x0q0(

xt

x0
− qt

q0
)

〉

,

where the first entry in ~v satisfies |q02
ρ| < 2γ−η+ρ and all the other entries satisfy |x0q0(

xi
x0
− qi

q0
)| =

|x0si| ≈ 2γ+ρ−η.
However, the target solution is not necessarily the shortest nonzero vector in the lattice,

and therefore is not necessarily discovered by lattice reduction. In particular, Minkowski tells
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us that L has a nonzero vector of length at most det(L)1/(t+1)
√

t + 1 < 2(ρ+tγ)/(t+1)
√

t + 1 =
2γ+(ρ−γ)/(t+1)

√
t + 1. This is shorter than our target solution when t + 1 < γ/η. In fact, heuristi-

cally, L will tend to have exponentially (in t) many vectors of length poly(t) det(L)1/(t+1), which
obscure our target solution.5

On the other hand, when t is large, ~v likely is the shortest vector in L, but known lattice
reductions algorithms will not be able to find it efficiently. Specifically, as a rule of thumb, they
require time roughly 2t/k to output a 2k approximation of the shortest vector. Since clearly there
are exponentially (in t) many vectors in L of length at most ‖x0‖

√
t + 1 < 2γ

√
t + 1, which is about

2η−ρ times longer than ~v, we need better than a 2η−ρ approximation. For t ≥ γ/η, the time needed
to guarantee a 2η approximation (which is not even good enough to recover ~v) is roughly 2γ/η2

.
Thus setting γ/η2 = ω(log λ) foils this attack.

Other known attacks are described in Appendix B. These attacks do not perform any better
than the ones above, and our choice of parameters achieves at least 2λ security against all of them.

6 Making the Scheme Fully Homomorphic

We follow Gentry’s approach [7] for constructing a fully homomorphic encryption scheme from a
somewhat homomorphic scheme E that is bootstrappable as per Definition 2.6. For reasons similar
to those in Gentry’s construction from [7], computing the decryption equation m′ ← [c − ⌊c/p⌉]2
seems to require boolean circuits that are deeper (by a constant factor) than what our somewhat
homomorphic scheme can handle. Hence we use Gentry’s transformation to “squash the decryp-
tion circuit.” In this transformation, we add to the public key some extra information about the
secret key, and use this extra information to “post process” the ciphertext. The post-processed
ciphertext can be decrypted more efficiently than the original ciphertext, thus making the scheme
bootstrappable. We pay for this saving by having a larger ciphertext, and also by introducing
another hardness assumption (basically assuming that the extra information in the public key does
not help an attacker break the scheme).

6.1 Squashing the Decryption Circuit

Let κ, θ, Θ be three more parameters, which are functions of λ. Concretely, below we use κ = γη/ρ′,
θ = λ, and Θ = ω(κ·log λ).6 For a secret key sk∗ = p and public key pk∗ from the original somewhat
homomorphic scheme E∗, we add to the public key a set ~y = {y1, . . . , yΘ} of rational numbers in
[0, 2) with κ bits of precision, such that there is a sparse subset S ⊂ {1, . . . ,Θ} of size θ with
∑

i∈S yi ≈ 1/p (mod 2). We also replace the secret key by the indicator vector of the subset S. In
more details, we modify the encryption scheme from Section 3 as follows:

KeyGen. Generate sk∗ = p and pk∗ as before. Set xp ← ⌊2κ/p⌉, choose at random a Θ-bit vector
with Hamming weight θ, ~s = 〈s1, . . . , sΘ〉, and let S = {i : si = 1}.
Choose at random integers ui ∈ Z ∩ [0, 2κ+1), i = 1, . . . ,Θ, subject to the condition that
∑

i∈S ui = xp (mod 2κ+1). Set yi = ui/2κ and ~y = {y1, . . . , yΘ}. Hence each yi is a positive

5When t is very small – e.g., t = 1 – the information that one obtains from the two dimensional lattice is related
to what one obtains from the continued fractions approach.

6When using the size-reduction optimization from Section 3.3 it is sufficient to use κ = γ + 2, which would also
make Θ smaller.
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number smaller than two, with κ bits of precision after the binary point. Also, [
∑

i∈S yi]2 =
(1/p)−∆p for some |∆p| < 2−κ.

Output the secret key sk = ~s and public key pk = (pk∗, ~y).

Encrypt and Evaluate. Generate a ciphertext c∗ as before (i.e., an integer). Then for i ∈ {1, . . . ,Θ},
set zi ← [c∗ · yi]2, keeping only n = ⌈log θ⌉ + 3 bits of precision after the binary point for
each zi. Output both c∗ and ~z = 〈z1, . . . , zΘ〉.

Decrypt. Output m′ ←
[

c∗ − ⌊∑i sizi⌉
]

2
.

Recall our definition of permitted polynomials from Section 3.2. We proved that our somewhat
homomorphic scheme was correct for the set C(PE) of circuit that compute permitted polynomials,
and we now show that this is true also of the modified scheme.

Lemma 6.1. The modified scheme from above is correct for C(PE). Moreover, for every ciphertext
(c∗, ~z) that is generated by evaluating a permitted polynomial, it holds that

∑

sizi is within 1/4 of
an integer.

Proof. Fix public and secret keys, generated with respect to security parameter λ, with {yi}Θi=1 the
rational numbers in the public key and {si}Θi=1 the secret-key bits. Recall that the yi’s were chosen
so that [

∑

i siyi]2 = (1/p)−∆p with |∆p| ≤ 2−κ.
Fix a permitted polynomial P (x1, . . . , xt) ∈ PE , an arithmetic circuit C that computes P , and

t ciphertexts {ci}ti=1 that encrypt the inputs to C, and denote c∗ = Evaluate(pk, C, c1, . . . , ct). We
need to establish that

⌊c∗/p⌉ =

⌊

∑

i

sizi

⌉

(mod 2)

where the zi’s are computed as [c∗ ·yi]2 with only ⌈log θ⌉+3 bits of precision after the binary point,
so [c∗ · yi]2 = zi −∆i with |∆i| ≤ 1/16θ. We have

[

(c∗/p)−
∑

sizi

]

2
=

[

(c∗/p)−
∑

si[c
∗ · yi]2 +

∑

si∆i

]

2

=
[

(c∗/p)− c∗ ·
[

∑

siyi

]

2
+
∑

si∆i

]

2

=
[

(c∗/p)− c∗ · (1/p−∆p) +
∑

si∆i

]

2

=
[

c∗ ·∆p +
∑

si∆i

]

2

We claim that the final quantity inside the brackets has magnitude at most 1/8. By definition,
since c∗ is a valid ciphertext output by a permitted polynomial, the value c∗/p is within 1/8 of an
integer. Together, these facts imply the lemma.

To establish the claim, observe that |∑ si∆i| ≤ θ · 1
16θ = 1/16. Regarding c∗ ·∆p, recall that the

output ciphertext c∗ is obtained by evaluating the polynomial P on the input ciphertexts ci (as if P
was an integer polynomial). By the definition of a permitted polynomial, for any α ≥ 1, if P ’s inputs
have magnitude at most 2α(ρ′+2), its output has magnitude at most 2α(η−4) when its inputs have
magnitude. In particular, when P ’s inputs are “fresh” ciphertexts, which have magnitude at most
2γ , P ’s output ciphertext c∗ has magnitude at most 2γ(η−4)/(ρ′+2) < 2κ−4. Thus, |c∗ ·∆p| < 1/16
and the claim follows.
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6.2 Bootstrapping Achieved!

Theorem 6.2. Let E be the scheme above, and let DE be the set of augmented (squashed) decryption
circuits. Then, DE ⊂ C(PE).

In other words, E is bootstrappable. The proof is similar to Gentry’s [6, 7]. By Theorem 2.7,
we obtain homomorphic encryption schemes for circuits of any depth.

Proof. The goal is to express the modified decryption equation

m′ ← c∗ −
⌊

∑

si · zi

⌉

mod 2

as a permitted polynomial (i.e., one satisfying Equation (1)), and show that there is a polynomial-
size circuit that computes this polynomial. Recall that c∗ is an integer, the si’s are bits, and the
zi’s are rational numbers in [0, 2), in binary representation with n = ⌈log θ⌉ + 3 bits of precision
after the binary point. Also, our parameter setting implies two promises – namely, that

∑

si · zi is
within 1/4 of an integer, and that only θ of the bits s1, . . . , sΘ are nonzero.

We split the computation up into three steps:

1. For i ∈ {1, . . . ,Θ}, set ai ← si · zi (i.e., ai = zi when si = 1 and ai = 0 otherwise). The
ai’s are still rational numbers in [0, 2), given in binary representation with n bits of precision
after the binary point.

2. From the Θ rational numbers {ai}Θi=1, generate other n + 1 rational numbers {wj}nj=0, each
with less than n bits of precision, such that

∑

j wj =
∑

i ai (mod 2).

3. Output c∗ − (
∑

j wj) mod 2.

The first step can be performed with a 1-level sub-circuit of multiplication gates. However, the
second and third steps require more complicated sub-circuits.

The problem of using a shallow boolean circuit to compute the sum
∑k

i=1 ri of k rational numbers
in binary representation is well-studied. A well-known technique uses the three-for-two trick (see
[13]), whereby a constant-depth circuit is used to transform three numbers of arbitrary bit-length
into two numbers that are at most 1 bit longer, such that the sum of the two output numbers is
the same as the sum of the three input numbers. (The output bits of the constant-depth circuit are
linear or quadratic expressions with 3 monomials in the input bits.) By applying this trick at most
⌈

log3/2 k
⌉

+2 times, one obtains two numbers s1 and s2 such that s1+s2 =
∑k

i=1 ri. Hence the total

depth that it takes to reduce k numbers to two numbers is d′ ≤ 2⌈log3/2 k⌉+2 < 8k1/ log(3/2) < 8k1.71.
The depth of the circuit needed to compute the final sum of two numbers is logarithmic in their bit-
lengths, but if we are only interested in ⌊s1 + s2⌉ mod 2 and have the promise that s1 +s2 is within
1/4 of an integer, this value can be computed by multivariate polynomial of degree 4 (and only nine

terms). Overall, the circuit for computing
⌊

∑k
i=1 ri

⌉

mod 2 corresponds to a polynomial of degree

at most d ≤ 32k1/ log(3/2). with coefficient vector having l1-norm at most 27d. Unfortunately, this
degree (with k = Θ) is still too large for our scheme to handle. Hence we use Gentry’s technique
from [6] that takes advantage of the fact that all but θ of the ai’s are zero.

Denote the bit representation of each number ai by ai,0•ai,−1ai,−2 . . . ai,−n. That is, ai =
∑n

j=0 2−jai,−j . The heart of this procedure is a subroutine for computing integers W−j , j =
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Figure 1: The procedure for summing up the ai’s: The binary representation of the rational
number ai is ai,0•ai,−1

ai,−2
. . . ai,−n . The integer W−j is the Hamming weight of the column of bits

(a
1,−j , a2,−j , . . . , aΘ,−j ).

0, 1, . . . , n, where W−j is the Hamming weight of the “column” of bits (a1,−j , a2,−j , . . . , aΘ,−j) (see
an illustration in Figure 1). Since at most θ of the ai’s are nonzero, then the W−j ’s are no larger
than θ, and hence can be represented by ⌈log(θ + 1)⌉ < n bits. By Lemma 6.3 below, every bit in
the binary representation of W−j can be expressed as a polynomial of degree at most θ in the Θ
variables ai,−j , i = 1, 2, . . . ,Θ. Moreover all of these polynomials can be computed simultaneously
by an arithmetic circuit of size O(θ ·Θ).

Once we have the W−j ’s, the sum of the ai’s can be obtained by
∑

i ai =
∑

j 2−jW−j . For

j = 0, 1, . . . , n we set wj = (2−j ·W−j) mod 2, so the wj ’s are rational numbers with ⌈log(θ + 1)⌉ < n
bits of precision. We can now sum-up the wj ’s using the three-for-two trick as above, this time
with k = n + 1, thus obtaining the sum of the ai’s mod 2.

We conclude that the degree of the polynomials in the first step is two, the degree of polynomials
in the second step is at most θ, and the degree of the polynomial in the third step is at most

32(n + 1)1/ log(3/2) < 32 ⌈log θ + 4⌉1.71 < 32 log2 θ

Therefore the total degree of the decryption circuit is bounded by 2 · θ · 32 log2 θ = 64θ log2 θ, and
since we are using θ = λ we have degree at most 64λ log2 λ.

It follows that the augmented decryption circuits DE (i.e., decryption followed by a single
multiplication or addition, cf. Definition 2.5) can be expressed as polynomials of degree at most
128λ log2 λ in the Θ variables si. Since the logarithm of l1-norm of this polynomial is small in
relation to η, and since Θ = ηγ

ρ · ω(log λ) < λ7 (and also τ < λ7) the argument in Remark 3.6 at
the end of Section 3.2 (with α = 128 and β = 7) indicates that we can get DE ⊂ C(PE), making
the scheme bootstrappable, by setting η = ρ ·Θ(λ log2 λ).

It is left to show how to compute the Wj ’s using polynomials of degree no larger than θ.

Lemma 6.3. Let ~σ = 〈σ1, σ2, . . . , σt〉 be a binary vector, let W = W (~σ) be the Hamming weight of
~σ, and denote the binary representation of W by Wn . . .W1W0. (That is, W =

∑n
i=0 2iWi and all

the Wi’s are bits.)
Then for every i ≤ n, the bit Wi(~σ) can be expressed as a binary polynomial of degree exactly 2i

in the variables σ1, . . . , σt. Moreover, there is an arithmetic circuit of size 2i · t that simultaneously
computes all the polynomials for W0, . . . , Wi.
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Proof. It is well known that the i’th bit in the binary representation of the Hamming weight of
bit-vector ~σ is equal to e2i(~σ) modulo 2, where ek(·) is the k’th elementary symmetric polynomial,
see Lemma 4 of [2]. That is,

Wi(~σ) = e2i(~σ) mod 2 =





∑

|S|=2i

∏

j∈S

σj



 mod 2

Clearly, the degree of e2i is exactly 2i.
As for the “Moreover” part, we can compute the elementary symmetric polynomials in the σi’s

as the coefficients of the polynomial P~σ(z) =
∏t

i=1(z − σi) in the auxiliary formal variable z, with
ek(~σ) being the coefficient of zt−k. Conveniently, to compute only the first few bits W0, W1, . . . , Wi,
we can simply discard the lower-order terms in P~σ(z) – i.e., we do not need the coefficients of zj

for j < t− 2i.
For example, one “dynamic programming” procedure for computing W0, W1, . . ., Wi (which

can be trivially made into a circuit) would go as follows:

Input: bits σ1, . . . , σt

0. Initialization: Set P0,0 ← 1 and Pj,0 ← 0 for j = 1, 2, 3, . . . , 2i

// Pj,k is the j’th symmetric polynomial in σ1 . . . σk

1. For k = 1, 2, . . . , t // incorporate σk

2. For j = 2i down to 1, set Pj,k ← σk × Pj−1,k−1 + Pj,k−1

3. Output P1,t, P2,t, P4,t, . . . , P2i,t

We can do a little better by using fast Fourier transform multiplication of polynomials. Using
this technique, we can compute the entire polynomial P~σ(z) with complexity t · polylog(t).

Remark 6.4. Note that our first circuit implementation of the procedure from above is not “shal-
low”. Nonetheless, since it computes only “low degree polynomials” (i.e., up to degree 2i), then by
Lemma 3.5 it is a permitted circuit.

6.3 Security of the Squashed Scheme

Putting the hint ~y in the public key induces another computational assumption, related to the sparse
subset sum problem (SSSP) used by Gentry [6], and studied previously (sometimes under the name
“low-weight” knapsack) in the context of server-aided cryptography [19] and in connection to the
Chor-Rivest cryptosystem [21]. We can easily avoid known attacks on the problem by choosing
θ large enough to avoid brute-force attacks (and improvements using time-space trade-offs) and
choosing Θ to be larger than ω(log λ) times the bit-length of the rational numbers in the public
key (which have length κ).7

7Note that the SSSP instance and the approximate-GCD instance share the same integer p, but this is not a
problem since SSSP is considered hard even if the attacker knows p.
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7 Conclusion and Open Problems

We described a fully homomorphic encryption scheme that uses only simple integer arithmetic. The
primary open problem is to improve the efficiency of the scheme, to the extent that it is possible
while preserving the hardness of the approximate-gcd problem.
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A Proof of Correctness

Proof. (Lemma 3.3] We first consider a “fresh” ciphertext output by Encrypt. The following lemma
says that each such ciphertext is close to a multiple of p, and that its difference from the closest
multiple of p has the same parity as m.

Lemma A.1. Let (sk, pk) be output by KeyGen(λ). Let c
R← Encrypt(pk, m) for m ∈ {0, 1}. Then,

c = a · p + (2b + m) for some integers a and b with |2b + m| ≤ τ2ρ+3.

Proof. By definition, c←
[

m + 2r +
∑

i∈S xi

]

x0

. Since |x0| ≥ |xi| for i ∈ {1, . . . , τ}, we have that

c =

(

m + 2r +
∑

i∈S

xi

)

+ k · x0 for some |k| ≤ τ.

For every i, there exist integers qi and ri with |ri| ≤ 2ρ such that xi = qi ·p+2ri, and also |ri| ≤ 2ρ.
We have

c = p ·
(

kq0 +
∑

i∈S

qi

)

+

(

m + 2r + k · 2r0 +
∑

i∈S

2ri

)
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Regarding the rightmost term, its parity is the same as m, and its absolute value is at most
(4τ + 3)2ρ < τ2ρ+3, as claimed.

The following lemma says that essentially the same is true for ciphertexts output by Evaluate –
i.e., ciphertexts are close to multiples of p, though possibly not as close.

Lemma A.2. Let (sk, pk) be output by KeyGen(λ). Let C ∈ CE be a circuit with t inputs and one

output. For i ∈ {1, . . . , t} and mi ∈ {0, 1}, let ci
R← Encrypt(pk, mi). Let m ← C(m1, . . . , mt)

and c ← Evaluate(pk, C, c1, . . . , ct). Then, c = a · p + (2b + m) for some integers a and b with
|2b + m| < p/8.

Proof. Let C ′ be the generalized circuit corresponding to C, which operates over the integers
rather than modulo 2. Generally, we have that C ′(c1, . . . , ct) ∈ C ′(2b1 + m1, . . . , 2bt + mt) + pZ.
So [C ′(2b1 + m1, . . . , 2bt + mt)]p has the same parity as m = C(m1, . . . , mt). We also have that
|C ′(2b1 + m1, . . . , 2bt + mt)| ≤ 2η/16 ≤ p/8 by the definition of CE , since |2bi + mi| ≤ τ2ρ+3 by
Lemma A.1.

Lemmas A.1 and A.2 immediately imply Lemma 3.3: for any circuit in CE and any encryptions
of inputs to that circuit, the integer output by Evaluate is of the form c = a · p + (2b + m) with
|2b + m| ≤ p/8 (where m is the plaintext that c is supposed to encrypt). Accordingly, we have

[c]p = 2b + m, and thus m =
[

[c]p

]

2
.

B More Known Attacks

B.1 Using Nguyen and Stern’s Orthogonal Lattice

As another lattice attack, consider the t-dimensional lattice L⊥~x of integer vectors orthogonal to
~x = (x0, . . . , xt). We have det(L⊥~x ) = ‖~x‖. (See Nguyen and Stern’s discussion of the orthogonal
lattice [20].) Heuristically, if ~x were “random,” we would expect the shortest nonzero vector in L⊥~x
to have length about

√
t det(L⊥~x )1/t ≈

√
t · 2γ/t. However ~x = p · ~q + ~r, where ~q = (q0, . . . , qt) and

~r = (r0, . . . , rt). Therefore, any vector that is orthogonal to both ~q and ~r – i.e., is in the lattice
L⊥~q,~r – is also in L⊥~x . For certain parameters, there will likely be t− 1 linearly independent vectors

in L⊥~q,~r that are much shorter than any vectors in L⊥~x \L⊥~q,~r. The idea of the attack is to reduce L⊥~x
to recover these t− 1 vectors of L⊥~q,~r, from which we can recover ~q and ~r, and hence p.

Consider the length of short vectors in L⊥~q,~r. The determinant of L⊥~q,~r is at most ‖~q‖ · ‖~r‖. Since

L⊥~q,~r has dimension t− 1, we expect L⊥~q,~r to have vectors of length approximately
√

t2(γ+ρ−η)/(t−1).

Now, consider the length of the shortest vector in L⊥~x \ L⊥~q,~r. L⊥~x has one more dimension than

L⊥~q,~r, and including this dimension increases the determinant by a factor of det(L⊥~x )/ det(L⊥~q,~r) ≈
‖~x‖/‖~q‖‖~r‖ ≈ 2η−ρ. The shortest vector in L⊥~x \ L⊥~q,~r therefore has length at most about 2η−ρ +

(1/2)
∑t−1

i=1 ‖~bi‖, where the ~bi’s are the shortest vectors in L⊥~x .
To recover vectors in L⊥~q,~r using lattice reduction, the attacker needs the shortest nonzero vector

in L⊥~x \ L⊥~q,~r to be longer than an independent set of vectors in L⊥~q,~r. This occurs roughly when

2η−ρ > 2(γ+ρ−η)/(t−1) ⇒ t > γ/(η − ρ).
On the other hand, when t > γ/(η− ρ) is large, lattice reduction algorithms will not be able to

recover the short vectors in L⊥~q,~r efficiently. Similar to the analysis of the SDA attack, we need our
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lattice reduction algorithm to provide at least a 2η−ρ approximation to obtain vectors guaranteed
to be in L⊥~q,~r, and (for such large t) known lattice reduction algorithms take time roughly 2γ/η2

to
guarantee such a close approximation.

A very similar attack is the following. Consider the lattice spanned by the rows of the following
t × (t + 1) matrix, where row i corresponds to the constraint xi − ri = 0 (mod p), and Ri is an
upper bound on |ri|.

M =











x1 R1

x2 R2
...

. . .

xt Rt











Let ~v = 〈v0, v1, . . . , vt〉 be a vector in this lattice, namely ~v =
∑t

i=1 µiMi for some integers µi.
Then, we have

v0 −
t
∑

i=1

vi

Ri
· ri =

t
∑

i=1

µixi −
t
∑

i=1

µiRi

Ri
· ri =

t
∑

i=1

µi(xi − ri) = 0 (mod p)

Suppose that the l1 norm of ~v is at most p/2. Then, |v0 −
∑t

i=1
vi
Ri
· ri| ≤

∑t
i=0 |vi| ≤ p/2. Since

this quantity also equals 0 modulo p, we have that v0 −
∑t

i=1
vi
Ri
· ri = 0 over the integers. If we

heuristically suppose that we can find t such ~v’s, all of which are orthogonal to (1,− r1

R1
, . . . ,− rt

Rt
),

then we can solve for the ri’s.
The determinant of this lattice is bounded by the product of the norms of the columns of M ,

namely at most
√

tXRt, where X is an upper bound on |xi|. Hence it has vectors roughly as short
as R t
√

X. To obtain suitable vectors ~v, we need this quantity to be at most p. We obtain R t
√

X < p
when t > γ/(η − ρ). The rest of the analysis is similar to that for the previous attack.

B.2 Extending Coppersmith’s Method

We may attempt to use Coppersmith’s technique [5] to augment the last attack from above. Namely,
instead of looking only at the relations xi − ri = 0 (mod p), we can also look at their products,
e.g. (xi − ri)

2 = 0 mod p2, (xi − ri)(xj − rj) = 0 mod p2, etc. As an illustrative example, consider
the case of products of up to two relations from a total of t = 3 available relations. We then have
a matrix whose rows correspond to the

(

t+1
2

)

= 6 possible pairs of relations, and whose columns

correspond to the
(

t+2
2

)

= 10 terms that appear in these product relations:

M =

























1 ρ1 ρ2 ρ3 ρ2
1 ρ1ρ2 ρ1ρ3 ρ2

2 ρ2ρ3 ρ2
3

x2
1 −2x1R1 R2

1

x1x2 −x2R1 −x1R2 R1R2

x1x3 −x3R1 −x1R3 R1R3

x2
2 −2x2R2 R2

2

x2x3 −x3R2 −x2R3 R1R3

x2
3 −2x3R3 R2

2

























← (x1 − r1)
2

← (x1 − r1)(u2 − r2)
← (x1 − r1)(u3 − r3)
← (x2 − r2)

2

← (x2 − r2)(u3 − r3)
← (x3 − r3)

2

As before, we consider the lattice spanned by the rows of this matrix, and look for vectors with
small l1 norm in this lattice. Any vector 〈v0, v1, . . . , v9〉 in this lattice corresponds to a multivariate
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polynomial of total degree two in the ρi’s, whose value at the point
〈

ρ1 = r1

R1
, ρ2 = r2

R2
, ρ3 = r3

R3

〉

is

equal to zero modulo p2. If in addition the l1 norm of this vector is smaller than p2, then it must
be the case that the polynomial evaluates to zero over the reals. If we can find t such small vectors
(corresponding to independent polynomials) then we can use resultants to eliminate all but one of
the variables, and then find the roots of the last polynomial, which would give one of the ri’s (and
therefore also p and all the other ri’s).

To get an estimate on the length of the vectors that we can expect to find, we again need to
estimate the determinant of the lattice. We note that in each of the columns, all the non-zero
entries are likely roughly the same size (up to polynomial factor in t). Hence if we use elementary
row operations to put this matrix in row-echelon form, then the coefficients of these elementary
operations would probably all be polynomially small. The resulting matrix (whose determinant is
equal to that of M) would have this form:



















Õ(X2) 0 0 0 0 0 Õ(R2) Õ(R2) Õ(R2) Õ(R2)

0 Õ(XR) 0 0 0 0 Õ(R2) Õ(R2) Õ(R2) Õ(R2)

0 0 Õ(XR) 0 0 0 Õ(R2) Õ(R2) Õ(R2) Õ(R2)

0 0 0 Õ(XR) 0 0 Õ(R2) Õ(R2) Õ(R2) Õ(R2)

0 0 0 0 Õ(R2) 0 Õ(R2) Õ(R2) Õ(R2) Õ(R2)

0 0 0 0 0 Õ(R2) Õ(R2) Õ(R2) Õ(R2) Õ(R2)



















The determinant can now be estimated as roughly equal to the product of the row-lengths, and
estimating the row-length using the size of the pivot we get

det(M) ≈ X2 · (XR)t · (R2)(
t
2
)−1 = X2+tRt2−1.

Since the lattice L(M) has dimension T =
(

t+1
2

)

, we expect to be able to find vectors in it of size
about

2εT · T
√

det(M) ≈ 2εt(t+1)/2 · (R(X(t+2)/(t+1)/R)1/t)2,

which is ≫ p2 for t ≤ (γ − ρ)/(η − ρ). The rest of the analysis is similar to that for the previous
attacks. (Note that here we actually do worse with products of pairs of relations than we did with

the individual relations, in that the size of the vector that we expect grew from 2O(t3/2) to 2O(t2).)

The general case. The heuristic analysis from above can be extended to the product of any
number of relations. In the general case, we use all the products of exactly d relations (out of
the t available ones, with repetitions). Hence we get

(

t+d−1
d

)

relations, defined over
(

t+d
d+1

)

terms,

all holding modulo pd. Putting all these relations in a matrix, we have an
(

t+d−1
d

)

×
(

t+d
d+1

)

matrix
with each row corresponding to a relation and each column corresponding to a term. Since all the
xi’s are roughly the same size X, and we have the same bound R on all the ri’s, then in a column
corresponding to a term of degree i ≤ d, every nonzero entry is of size roughly Xd−iRi. Hence we
can do elementary row operations with small coefficients to put this matrix in row-echelon form,
and the size of the pivot in a column corresponding to a degree-i term will still be Õ(Xd−iRi).

Using these pivots as estimates for the row size, we have one row of size Õ(Xd), t rows of
size Õ(Xd−1R), etc. In general for each i < d we have

(

t+i−1
i

)

rows of size Õ(Xd−iRi), and the

remaining rows are of size Õ(Rd) (there are
(

t+d−1
d

)

−∑d−1
i=0

(

t+i−1
i

)

of those).
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C Circuit Privacy

As described so far, our scheme may leak some information about the circuit to the holder of the
secret key. For example, in the somewhat homomorphic scheme from Section 3 even just the bit-
length of the ciphertext reveals the number of multiplication operations in the circuit. So if we use
the “augmented decryption circuits”, it reveals whether the final operation after encryption was
addition or multiplication.8

If we are using the ciphertext-size-reduction optimization from Section 3.3 then it is easy to
re-randomize the ciphertext so as to remove all traces of the circuit, by adding a “high noise”
encryption of zero. For the Somewhat Homomorphic scheme from Section 3, this means using a
somewhat larger value of η (call it η′), so that evaluating permitted circuits result in noise of bit
length at most η′ − ω(logλ). After computing the final ciphertext c (with respect to public key
pk = 〈x0, x1, . . . , xτ 〉) we choose a random subset S ⊆R {1, . . . , τ} and a random noise integer, say
r ← [−2η′−5, 2η′−5], and output c′ ← [c +

∑

i∈S xi]x0
+ 2r. Clearly, the added term 2r hides the

noise component of the original ciphertext c, making rp(c
′) close to uniform. At the same time,

adding the subset
∑

i∈S xi randomizes the quotient, making qp(c
′) close to uniform modulo qp(x0)

(again by the leftover hash lemma).
It is clear that this technique only works if the ciphertext size before re-randomization is not

much larger than x0 (or else the mod x0 operation will introduce too much noise). Hence the
requirement of using the ciphertext-size-reduction optimization. If we do not use the ciphertext-
size-reduction optimization, then we can add to the public key “big encryptions of 0” for this
purpose. (Namely, integers x′ = q′p + r′ with r′ in the usual range [−2ρ, 2ρ] but q′ of size as large
as one gets as the result of Evaluate.)

Alternatively, it is always possible to convert a compact homomorphic encryption scheme to
one that offers also circuit privacy, by using Yao’s garbled circuit to homomorphically perform the
decryption operation of the compact scheme.

We note that all of these solutions apply only to the “honest-but-curious” case, where the public
key is generated as it should by the KeyGen procedure. We did not look into the problem of hiding
the circuit in the presence of a maliciously-generated public key.

D How to Compress Our Ciphertexts

Ciphertexts in our somewhat homomorphic scheme are very long – θ̃(λ5) bits under our suggested
parameters. Here, we show how to “compress” or post-process the ciphertexts from the some-
what homomorphic scheme down to (asymptotically) the size of an RSA modulus, reducing the
communication complexity of our scheme dramatically.

The best time to use the compression algorithm is on the final output ciphertexts, after all
applications of the Evaluate algorithm have been completed. The reason is that the compressed
ciphertexts cannot be decrypted by a shallow circuit, and consequently the modified somewhat
homomorphic scheme is not bootstrappable.

Abstractly, the modified scheme works as follows. We supplement the public key with the
description of a cyclic group G = 〈g〉 whose order is a multiple of p. The compressed ciphertext

8This particular problem can be solved by canonicalizing the circuits, ensuring that they all have the same number
of additions and multiplication (e.g., by adding multiplications by one and additions of zero as needed). Still, this
may not be enough to ensure that no information about the circuit is leaking.
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is simply c∗ ← gc. Note that DLg(c
∗) = c mod p. To decrypt the compressed ciphertext, one sets

m← (DLg(c
∗) mod p) mod 2. Correctness follows immediately from the correctness of the original

scheme. We prove that the modified scheme is semantically secure, if the approximate-gcd problem
is hard and the following decision subgroup problem (informally stated here) is hard: for distinct
fixed integers p(0), p(1), given the description of a group G whose order is divisible by either p(0) or
p(1), decide which is the case.

To make the abstract approach concrete, first we require p to be smooth – specifically, a product
of prime numbers that are all polynomial in λ. During key generation, one samples a modulus
N such that N “phi-hides” p – i.e., such that p|φ(N) – along with a generator g of a cyclic
subgroup of Z

∗
N whose order is a multiple of p. The encrypter or evaluator computes c as in the

somewhat homomorphic scheme, and sets c∗ ← gc mod N . The decrypter uses its knowledge of
the factorization of N to compute the discrete log DLg(c

∗) mod p. The smoothness of p allows
the decrypter to compute this discrete log efficiently. Of course, security relies in part on the
approximate-gcd problem still being hard for this particular (smooth) distribution of p.

Our compressed ciphertext is log N bits. For the decision subgroup problem to be hard, we
need (log N)/(log p) > 4; otherwise, Coppersmith’s method can be used to factor N efficiently
[5]. However, if the ratio is a bit larger – e.g., if (log N)/(log p) > 10 – the best known attack
on the decision subgroup problem is to factor N using the number field sieve (NFS). This attack
takes exponential (i.e., 2λ) time when log N is θ(λ3/ log2 λ), which is ω(log p) for our suggested
parameters. In particular, asymptotically, the integer N – and hence a compressed ciphertext –
has the same size as an RSA modulus.

We now describe the modified scheme more formally. Let G be a set of cyclic groups. Let
GroupGen(G, p, ℓ) be an algorithm that takes as input G and p < 2ℓ for ℓ = poly(λ), and samples a
group G from G with generator g whose order ng is at least 2ℓ and divisible by p; it outputs (G, g, ng).
Later, we specify how to instantiate GroupGen over composite moduli, and the parameter ℓ will
concretely represent the bit-length of the modulus N , in which case we may have ℓ = Ω(λ3/ log2 λ).

KeyGenE∗(λ): Run (sk, pk) ← KeyGenE(λ), but with the requirement that p is poly(λ)-smooth.
Run (G, g, ng) ← GroupGen(p, ℓ). Output the secret key sk∗ ← (sk, ng) and the public key pk∗ ←
(pk, G, g).

CompressE∗(pk∗, c): Takes as input pk and a ciphertext c output by EncryptE or EvaluateE . Output
the ciphertext c∗ ← gc ∈ G.

DecryptCompE∗(sk
∗, c∗): For each prime divisor pi of p, output set xi ← DLgng/pi (c

∗ng/pi) mod pi.
Use CRT to compute x = DLg(c

∗) mod p from the xi’s. Output x mod 2.

Remark D.1. Regarding KeyGenE∗ , the t-th prime number pt satisfies pt = (1+o(1))t ln t, and the
product of the first t prime numbers – i.e., the “primorial” pt# – is exp((1+ o(1))t ln t). Therefore,
asymptotically, to sample a smooth p of η = θ̃(λ2) bits, we can set p to be a random subset product
of the prime numbers less than 2η = poly(λ).

Remark D.2. Regarding DecryptCompE∗ , note that the group generated by gng/pi has small order
– namely, pi = poly(λ). Computing DLgng/pi (c

∗ng/pi) mod pi takes only
√

pi arithmetic operations
using the baby-step-giant-step method.

We formally define the decision subgroup problem as in [8]. This problem is closely related to
the phi-hiding problem, described in [3].
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Definition D.3 (Decision Subgroup Problem (from [8])). Let η, ℓ be parameters. Let π0, π1 ∈
[2η−1, 2η − 1] be distinct integers. Let G be the set of cyclic groups, and GroupGen†(G, π, ℓ) be
an algorithm that samples a group G from G with generator g whose order is in [2ℓ, 2ℓ+1 − 1]
and divisible by π, and outputs (G, g). We say that algorithm A has advantage ǫ against the
(G, η, ℓ, π0, π1, GroupGen†)-Decision Subgroup Problem if

∣

∣

∣

∣

Pr
[

b
R←− {0, 1}, Gb

D←− GroupGen†(G, πb, ℓ) : A(G, Gb, η, ℓ, π0, π1, GroupGen†) = b
]

− 1

2

∣

∣

∣

∣

≥ ǫ.

Definition D.4 (Decision Subgroup Assumption). For appropriate η, ℓ, and GroupGen†, the deci-
sion subgroup problem is hard for any π0, π1.

In the following theorem, we let E be the statistically circuit-private version of the somewhat
homomorphic scheme, and let E∗ refer to the modified scheme.

Theorem D.5. Suppose that there is an algorithm A that breaks the semantic security E∗ with
advantage ǫ. Let GroupGen† be identical to the algorithm GroupGen used in E∗, except that it does
not output the order ng. Then, there are algorithms B0 and B1, each running in about the same
time as A, such that either B0 has advantage ǫ/3 in solving the decision subgroup problem or B1

has advantage ǫ/3 against the semantic security of E.
Proof. Let Game 0 be the real-world semantic security game against the modified encryption
scheme, where the challenge is a modified ciphertext. Note that the E ciphertext from which the
challenge modified ciphertext is derived could be an output of EncryptE or EvaluateE , but by the
statistical circuit privacy of E , the output distributions of EncryptE and EvaluateE are statistically
identical, conditional on the underlying plaintexts being identical.

Game 1 is like Game 0, except the challenger generates pk∗ differently. It runs (sk, pk) ←
KeyGenE as before, where sk is the prime integer p = p(0). But instead of inputting p into
the GroupGen algorithm, it generates a random η-bit odd number p(1) and runs (G, g, ng) ←
GroupGen(p(1), ℓ), and sets pk∗ ← (pk, G, ng). By assumption, ǫ is A’s advantage in Game 0.
Let ǫ′ be A’s advantage in Game 1.
B0 runs as follows. It runs (sk, pk) ← KeyGenE(λ), sets p(0) ← sk, and generates random η-bit

odd number p(1). It then asks for a decision subgroup problem instance with respect to p(0) or p(1).

The challenger sets bit b
R← {0, 1} and sends a decision subgroup instance (G, g) to B0 with respect

to p(b). B0 sets pk∗ ← (pk, G, g) and sends pk∗ to A. When A asks for a challenge ciphertext on

one of (m0, m1), B0 sets β
R← {0, 1}, sets c ← EncryptE(pk, mβ), and sends c∗ ← gc. Eventually,

A sends a bit β′. B0 sends b′ ← β ⊕ β′ to the challenger. Note that the public key pk (and the
other aspects of the simulation) is distributed exactly as in Game b. In particular, by the statistical
circuit privacy of E , the real-world distribution of the challenge is the same. Therefore, we compute
that B0’s advantage is at least |ǫ− ǫ′|/2.
B1 attacks the semantic security of the original scheme E as follows. It obtains an E public key pk

from the challenger. It generates random η-bit odd number p(1), runs (G, g, ng)← GroupGen(p(1), ℓ),
and sends pk∗ ← (pk, G, g) toA. WhenA asks for a challenge ciphertext on one of (m0, m1), B1 asks
the challenger for a challenge ciphertext on one of (m0, m1). The challenger sends back a challenge
ciphertext c. B1 sends c∗ ← gc to A. A sends a bit b′, which B1 forwards to the challenger. We see
that the distribution is the same as in Game 1. Also, B1’s bit is correct if A’s bit is correct. So B1

has advantage ǫ′.
The theorem follows.
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We can implement GroupGen as in prior work [3, 8]. For example, Gentry and Ramzan [8]
generate a N = Q0Q1, where Q0 = 2q0p + 1 is a random “semi-safe” prime with q0 prime, and
Q1 = 2dq1 + 1 for prime q1 and d chosen uniformly from a large interval. This technique ensures
that N mod p is statistically uniform. They show that, for this instantiation of GroupGen, the best
generic attacks on the decision subgroup assumption take exponential time. We refer to [3, 8] for
the details.
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