Algebra?

Christelle Vincent

September 1, 2021

1 Introduction

Hi we are going to do math!

$$
\begin{equation*}
a^{2}+b^{2}=c^{2} \tag{1}
\end{equation*}
$$

Inline math: 2^{3} Let X be a set and \cdot be a binary operation. Then we have

$$
\begin{equation*}
\sin ^{2} \theta+\cos ^{2} \theta=1 \tag{2}
\end{equation*}
$$

As we see in equation (2)....

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

For $x \in \mathbb{R}, \mathbb{C}, \mathbb{Z}$ look!! \mathbb{R}
$\mathcal{O}, \mathfrak{p}$
θ or ϑ
ϵ or $\varepsilon \phi$ or φ
α or
a^{10}
Fun fact!

$$
\begin{aligned}
\phi: A & \rightarrow B \\
a & \mapsto b
\end{aligned}
$$

$$
\begin{array}{|c|c|c}
a & b & c \\
\hline \hline 2 & 4 & 6
\end{array}
$$

$G=\langle\sigma\rangle=<\sigma\rangle$

2 Matrices

Let's see how to typeset some matrices!

$$
\left(\begin{array}{ccc}
\frac{1}{2} & \frac{1}{7} & 8 \\
89 & -10 & -\frac{2}{5}
\end{array}\right)
$$

Notice the difference between "frac" and "dfrac" (the "d" is for "display").

Same matrix but this time no parentheses:

$\frac{1}{2}$	$\frac{1}{7}$	8
89	-10	$-\frac{2}{5}$

Now brackets:

$$
\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{7} & 8 \\
89 & -10 & -\frac{2}{5}
\end{array}\right]
$$

Finally vertical lines. I'm not sure if there are other matrix styles, but I never need them!

$$
\left|\begin{array}{ccc}
\frac{1}{2} & \frac{1}{7} & 8 \\
89 & -10 & -\frac{2}{5}
\end{array}\right|
$$

