Algebra?

Christelle Vincent

September 1, 2021

1 Introduction

Hi we are going to do math!

$$a^2 + b^2 = c^2 \tag{1}$$

Inline math: 2^3 Let X be a set and \cdot be a binary operation. Then we have

$$\sin^2\theta + \cos^2\theta = 1\tag{2}$$

As we see in equation (2)....

 $\sin^2\theta + \cos^2\theta = 1$

For $x \in \mathbb{R}, \mathbb{C}, \mathbb{Z}$ look!! \mathbb{R} $\mathcal{O}, \mathfrak{p}$ θ or ϑ ϵ or $\varepsilon \phi$ or φ α or a^{10} Fun fact!

$$\phi: A \to B$$

$$a \mapsto b$$

$$(3)$$

$$a \mid b \mid c$$

$$2 \mid 4 \mid 6$$

 $G = \langle \sigma \rangle = <\sigma >$

2 Matrices

Let's see how to typeset some matrices!

$$\begin{pmatrix} \frac{1}{2} & \frac{1}{7} & 8\\ 89 & -10 & -\frac{2}{5} \end{pmatrix}$$

Notice the difference between "frac" and "dfrac" (the "d" is for "display").

Same matrix but this time no parentheses:

$$\begin{array}{ccccc} \frac{1}{2} & \frac{1}{7} & 8\\ 89 & -10 & -\frac{2}{5}\\ \end{array} \\ \left[\frac{1}{2} & \frac{1}{7} & 8\\ 89 & -10 & -\frac{2}{5} \end{array} \right]$$

Now brackets:

Finally vertical lines. I'm not sure if there are other matrix styles, but I never need them!

$$\begin{vmatrix} \frac{1}{2} & \frac{1}{7} & 8\\ 89 & -10 & -\frac{2}{5} \end{vmatrix}$$