This homework is "due" on Monday November 8 at 11:59pm.
You may also (in addition to or instead of turning this in as a homework, your choice) use this assignment as a quiz. In this case, give yourself one hour to solve two of these problems completely.

1. Let $K=\mathbb{Q}(\sqrt{3+\sqrt{5}})$.
(a) Show that K / \mathbb{Q} is a Galois extension.
(b) Determine the Galois group of K / \mathbb{Q}.
(c) Find all subfields of K.
2. Let $\alpha=\sqrt{1-\sqrt[3]{5}} \in \mathbb{C}$ (where $\sqrt[3]{5}$ denotes the real cube root), let K be the splitting field of the minimal polynomial of α over \mathbb{Q}, and let $G=\operatorname{Gal}(K / \mathbb{Q})$.
(a) Find the degree of $\mathbb{Q}(\alpha)$ over \mathbb{Q}.
(b) Show that K contains the splitting field of $x^{3}-5$ over \mathbb{Q} and deduce that G has a normal subgroup H such that $G / H \cong S_{3}$.
(c) Show that the order of the subgroup H in (b) divides 8 .
3. Let $L=\mathbb{Q}(\sqrt{2}, \sqrt{3})$ and let $\alpha=\sqrt{2}-\sqrt{3}$.
(a) Show that $[L(\sqrt{\alpha}): L]=2$ and $[L(\sqrt{\alpha}): \mathbb{Q}]=8$.
(b) Find the minimal polynomial of $\sqrt{\alpha}$ over \mathbb{Q}.
(c) Show that $L(\sqrt{\alpha})$ is not Galois over \mathbb{Q}.
4. Let α be the real, positive fourth root of 5 , and let $i=\sqrt{-1} \in \mathbb{C}$. Let $K=\mathbb{Q}(\alpha, i)$.
(a) Prove that K / \mathbb{Q} is a Galois extension with Galois group dihedral of order 8 .
(b) Find the largest abelian extension of \mathbb{Q} in K (i.e., the unique largest subfield of K that is Galois over \mathbb{Q} with abelian Galois group) - justify your answer.
(c) Show that $\alpha+i$ is a primitive element for K / \mathbb{Q}.
