This homework is "due" on Monday October 11 at 11:59pm.
You may also (in addition to or instead of turning this in as a homework, your choice) use this assignment as a quiz. In this case, give yourself one hour to solve two of these problems completely.

1. Let G be a group of odd order and let σ be an automorphism of G of order 2 .
(a) Prove that for every prime p dividing the order of G there is some Sylow p subgroup P of G such that $\sigma(P)=P$ (i.e., σ stabilizes the subgroup P - note that σ need not fix P elementwise).
(b) Suppose that G is a cyclic group. Prove that $G=A \times B$ where

$$
A=C_{G}(\sigma)=\{g \in G: \sigma(g)=g\} \quad \text { and } \quad B=\left\{x \in G: \sigma(x)=x^{-1}\right\}
$$

(Remark: This decomposition is true more generally when G is abelian.)
2. Let G be a group of order 63 .
(a) Compute the number n_{p} of Sylow p-subgroups permitted by Sylow's Theorem for all primes p dividing 63 .
(b) Show that if the Sylow 3-subgroup of G is normal, then G is abelian.
(c) Let H be a group of order 9. Show that there is only one nontrivial action of the group H on the group C_{7} (up to automorphisms of H).
(d) Show that there are exactly four isomorphism classes of groups of order 63.
3. Fix p a prime and let G be the group of matrices of the form

$$
\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

where $a, b, c \in \mathbb{F}_{p}$, and where the operation is multiplication.
(a) Prove that the subgroup H of matrices where $a=c=0$ is normal.
(b) Express the group G / H as a direct product of cyclic groups. (Your answer can be a single cyclic group if G / H is cyclic.) You must justify your answer.
(c) Prove that for each prime p, there is a group of order p^{3} that is not abelian. (You might remember that all groups of order p and p^{2} are abelian, when p is prime. It ends there!)
4. Let G be the group $G=\left\langle a, b \mid a^{3}=b^{4}=b a b^{-1} a=1\right\rangle$.
(a) Show that G is a nonabelian group of order 12 .
(b) Show that G is not isomorphic to A_{4}.
(c) Show that G is not isomorphic to D_{6}, the dihedral group with 12 elements.

