Qual problem set 5

This homework is "due" on Monday October 4 at 11:59pm.

You may also (in addition to or instead of turning this in as a homework, your choice) use this assignment as a quiz. In this case, give yourself one hour to solve two of these problems completely.

1. Let G be a group of order $10,989=3^{3} \cdot 11 \cdot 37$.
(a) Compute the number n_{p} of Sylow p-subgroups permitted by Sylow's Theorem for each of $p=3,11$ and 37 ; for each of these n_{p} give the order of the normalizer of a Sylow p-subgroup.
(b) Show that G contains either a normal Sylow 37-subgroup or a normal Sylow 3-subgroup.
(c) Explain briefly why (in all cases) G has a normal Sylow 11-subgroup.
(d) Deduce that the center of G is nontrivial.
2. Assume that G is a simple group of order $4851=3^{2} \cdot 7^{2} \cdot 11$.
(a) Compute the number n_{p} of Sylow p-subgroups permitted by Sylow's Theorem for each of $p=3,7$, and 11 ; for each of these n_{p} give the order of the normalizer of a Sylow p-subgroup.
(b) Show that there are distinct Sylow 7-subgroups P and Q such that $\# P \cap Q=7$.
(c) For P and Q as in (b), let $H=P \cap Q$. Explain briefly why 11 does not divide $\# N_{G}(H)$.
(d) Show that there is no simple group of this order. (Hint: How many Sylow 7subgroups does $N_{G}(H)$ contain, and is this permissible by Sylow?)
3. Let G be a finite group with the property that the centralizer of every nonidentity element is an abelian subgroup of G. (Such a group is called a $C A$-group.)
(a) Prove that every Sylow p-subgroup of G is abelian, for every prime p.
(b) Prove that if P and Q are distinct Sylow subgroups of G, then $P \cap Q=1$.
4. Let G be a finite group, let p be a prime and let $P \in \operatorname{Syl}_{p}(G)$. Assume that P is abelian.
(a) Prove that two elements of P are conjugate in G if and only if they are conjugate in $N_{G}(P)$.
(b) Prove that $P \cap g P g^{-1}=1$ for every $g \in G-N_{G}(P)$ if and only if $P \unlhd C_{G}(x)$ for every nonidentity element $x \in P$.
