Math 395 - Fall 2021 Qual problem set 2

This homework is "due" on Monday September 13 at 11:59pm.

You may also (in addition to or instead of turning this in as a homework, your choice) use this assignment as a quiz. In this case, give yourself one hour to solve two of these problems completely.

1. Let G be a finite group acting transitively (on the left) on a nonempty set Ω . For $\omega \in \Omega$, let G_{ω} be the usual stabilizer of the point ω :

$$G_{\omega} = \{ g \in G : g\omega = \omega \},\$$

where $g\omega$ denotes the action of the group element g on the point ω .

- (a) Prove that $hG_{\omega}h^{-1} = G_{h\omega}$ for every $h \in G$.
- (b) Assume that G is abelian. Let N be the kernel of the transitive action. Prove that $N = G_{\omega}$ for every $\omega \in \Omega$.
- (c) Show that part (b) is not true if G is not abelian. In other words, give an example of a finite group G and a nonempty set Ω on which G acts transitively on the left such that $N \neq G_{\omega}$ for some ω .
- 2. Let N be a normal subgroup of the group G, and for each $g \in G$, let ϕ_g denote conjugation by g acting on N, i.e,

$$\phi_q(x) = gxg^{-1}$$
 for all $x \in N$.

- (a) Prove that ϕ_g is an automorphism of N for each $g \in G$.
- (b) Prove that the map $\Phi: g \mapsto \phi_g$ is a homomorphism from G into Aut(N).
- (c) Prove that ker $\Phi = C_G(N)$ and deduce that $G/C_G(N)$ is isomorphic to a subgroup of Aut(N).
- 3. Let G be a finite group acting transitively on the left on a nonempty set Ω . Let $N \leq G$, and let $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$ be the orbits of N acting on Ω . For any $g \in G$, let

$$g\mathcal{O}_i = \{g\alpha : \alpha \in \mathcal{O}_i\}.$$

- (a) Prove that $g\mathcal{O}_i$ is an orbit of N for any $i \in \{1, 2, ..., r\}$, i.e., $g\mathcal{O}_i = \mathcal{O}_j$ for some j.
- (b) With G acting as in part (a), explain why G permutes $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_r$ transitively.
- (c) Deduce from (b) that $r = [G : NG_{\alpha}]$, where G_{α} is the subgroup of G stabilizing the point $\alpha \in \mathcal{O}_1$.
- 4. (a) Find all finite groups G such that $\# \operatorname{Aut}(G) = 1$.
 - (b) Argue that your argument from part (a) applies directly to infinite groups as well to find all infinite groups G with $\# \operatorname{Aut}(G) = 1$.