This homework is "due" on Monday December 13 at 11:59pm.
You may also (in addition to or instead of turning this in as a homework, your choice) use this assignment as a quiz. In this case, give yourself one hour to solve two of these problems completely.

1. Let ζ be a primitive 24 th root of unity in \mathbb{C}, and let $K=\mathbb{Q}(\zeta)$.
(a) Describe the isomorphism type of the Galois group of K / \mathbb{Q}.
(b) Determine the number of quadratic extensions of \mathbb{Q} that are subfields of K. (You need not give generators for these subfields.)
(c) Prove that $\sqrt[4]{2}$ is not an element of K.
2. Let n be a given positive integer and let $E_{2^{n}}$ be the elementary abelian group of order 2^{n} (the direct product of n copies of the cyclic group of order 2). Show that there is some positive integer N such that the cyclotomic field $\mathbb{Q}\left(\zeta_{N}\right)$ contains a subfield F that is Galois over \mathbb{Q} with $\operatorname{Gal}(F / \mathbb{Q}) \cong E_{2^{n}}$, where ζ_{N} is a primitive N th root of 1 in \mathbb{C}.
3. Put $\alpha=e^{\frac{2 \pi i}{7}}$, and consider the field $K=\mathbb{Q}(\alpha)$. Find an element $x \in K$ such that $[\mathbb{Q}(x): \mathbb{Q}]=2$. (Proving that such x exists will earn you partial credit; for full credit, express x explicitly as a polynomial in α, such as $42 \alpha^{3}-1337 \alpha^{5}$, for example.)
4. In this problem, let $p>2$ be a prime and for all n let $\Phi_{n}(x) \in \mathbb{Z}[x]$ be the nth cyclotomic polynomial.
(a) Show that $\Phi_{p}(x+1)$ is irreducible over \mathbb{Z}.
(b) Conclude that $\Phi_{p}(x)$ is irreducible over \mathbb{Q}.
(c) Prove that $\Phi_{2 p}(x)=\Phi_{p}(-x)$ for all odd primes p.
5. In this problem, let ζ be a primitive eighth root of unity.
(a) Give the lattice of all fields containing \mathbb{Q} contained in $\mathbb{Q}(\zeta)$.
(b) For each of the fields you enumerated in part (a), give a generator in terms of ζ. (For example, you could say that a field is generated by $\zeta^{3}+4$.)
(c) For each of the fields you enumerated in part (a), give a generator in terms of radicals of rational numbers. (For example, you could say that a field is generated by $\sqrt{17}$.)
