Math 395 - Fall 2021
Qual problem set 12
This homework is "due" on Monday December 6 at 11:59pm.
You may also (in addition to or instead of turning this in as a homework, your choice) use this assignment as a quiz. In this case, give yourself one hour to solve two of these problems completely.

1. Let p be a prime, let \mathbb{F}_{p} be the field of order p, and let $\overline{\mathbb{F}}_{p}$ be an algebraic closure of \mathbb{F}. Let n be a positive integer relatively prime to p and let F_{n} be the splitting field of the polynomial $f_{n}(x)$ in $\overline{\mathbb{F}}_{p}$, where

$$
f_{n}(x)=x^{n}-1 .
$$

(a) Explain briefly why $\left[F_{n}: \mathbb{F}_{p}\right]$ is equal to the order of p in the multiplicative subgroup $(\mathbb{Z} / n \mathbb{Z})^{\times}$. (You can quote without proof basic facts you need about finite fields.)
(b) If n and m are relatively prime and neither is divisible by p, is $F_{n m}=F_{n} F_{m}$?
2. Let q be a power of a prime, let $\operatorname{Gal}\left(\mathbb{F}_{q^{2}} / \mathbb{F}_{q}\right)=\langle\sigma\rangle$ (note that σ has order 2). Let N be the usual norm map for this extension:

$$
N: \mathbb{F}_{q^{2}}^{\times} \rightarrow \mathbb{F}_{q}^{\times} \quad \text { given by } \quad N(x)=x \sigma(x)
$$

(a) What is the degree of the extension $\mathbb{F}_{q^{2}}$ over \mathbb{F}_{q} ? Describe how the Frobenius automorphism for this extension acts on the elements of $\mathbb{F}_{q^{2}}$. What is its relationship to σ above?
(b) Prove that N is surjective.
(c) Show that $\mathbb{F}_{q^{2}}^{\times}$has an element of order $q+1$ whose norm is 1 .
(d) Compute the following index: $\left[\mathbb{F}_{q}^{\times}: N\left(\mathbb{F}_{q}^{\times}\right)\right]$.
3. Let K be a field with 625 elements.
(a) How many elements of K are primitive (field) generators for the extension K / \mathbb{F}_{5} ? (Justify.)
(b) How many nonzero elements are generators of the multiplicative group K^{\times}? (Justify.)
(c) How many nonzero elements of K satisfy $x^{75}=x$? (Justify.)
(d) Let F be the subfield of K with 25 elements. How many elements a in F are there such that $K=F(\sqrt{a})$?
4. (a) How many distinct roots does the polynomial $x^{3}-1$ have in $\overline{\mathbb{F}}_{3}$?
(b) How many distinct roots does the polynomial $x^{7}-1$ have in $\overline{\mathbb{F}}_{3}$?
(c) Let K be the splitting field of $x^{7}-1$ over \mathbb{F}_{3}. What is the degree of K over \mathbb{F}_{3} ?
(d) Draw the lattice of all subfields of K. (You need not give generators for these subfields.)
(e) How many elements $\alpha \in K$ generate the multiplicative group K^{\times}?
(f) How many primitive elements are there for the extension K / \mathbb{F}_{3} ? (In other words, how many β are there such that $K=\mathbb{F}_{3}(\beta)$?)

