Math 395 - Fall 2021 Qual problem set 12

This homework is "due" on Monday December 6 at 11:59pm.

You may also (in addition to or instead of turning this in as a homework, your choice) use this assignment as a quiz. In this case, give yourself one hour to solve two of these problems completely.

1. Let p be a prime, let \mathbb{F}_p be the field of order p, and let $\overline{\mathbb{F}}_p$ be an algebraic closure of \mathbb{F} . Let p be a positive integer relatively prime to p and let p be the splitting field of the polynomial $f_n(x)$ in $\overline{\mathbb{F}}_p$, where

$$f_n(x) = x^n - 1.$$

- (a) Explain briefly why $[F_n : \mathbb{F}_p]$ is equal to the order of p in the multiplicative subgroup $(\mathbb{Z}/n\mathbb{Z})^{\times}$. (You can quote without proof basic facts you need about finite fields.)
- (b) If n and m are relatively prime and neither is divisible by p, is $F_{nm} = F_n F_m$?
- 2. Let q be a power of a prime, let $\operatorname{Gal}(\mathbb{F}_{q^2}/\mathbb{F}_q) = \langle \sigma \rangle$ (note that σ has order 2). Let N be the usual norm map for this extension:

$$N \colon \mathbb{F}_{q^2}^{\times} \to \mathbb{F}_q^{\times} \quad \text{given by} \quad N(x) = x\sigma(x).$$

- (a) What is the degree of the extension \mathbb{F}_{q^2} over \mathbb{F}_q ? Describe how the Frobenius automorphism for this extension acts on the elements of \mathbb{F}_{q^2} . What is its relationship to σ above?
- (b) Prove that N is surjective.
- (c) Show that $\mathbb{F}_{q^2}^{\times}$ has an element of order q+1 whose norm is 1.
- (d) Compute the following index: $[\mathbb{F}_q^{\times} : N(\mathbb{F}_q^{\times})]$.
- 3. Let K be a field with 625 elements.
 - (a) How many elements of K are primitive (field) generators for the extension K/\mathbb{F}_5 ? (Justify.)
 - (b) How many nonzero elements are generators of the multiplicative group K^{\times} ? (Justify.)
 - (c) How many nonzero elements of K satisfy $x^{75} = x$? (Justify.)
 - (d) Let F be the subfield of K with 25 elements. How many elements a in F are there such that $K = F(\sqrt{a})$?
- 4. (a) How many distinct roots does the polynomial $x^3 1$ have in $\overline{\mathbb{F}}_3$?

- (b) How many distinct roots does the polynomial $x^7 1$ have in $\overline{\mathbb{F}}_3$?
- (c) Let K be the splitting field of $x^7 1$ over \mathbb{F}_3 . What is the degree of K over \mathbb{F}_3 ?
- (d) Draw the lattice of all subfields of K. (You need not give generators for these subfields.)
- (e) How many elements $\alpha \in K$ generate the multiplicative group K^{\times} ?
- (f) How many primitive elements are there for the extension K/\mathbb{F}_3 ? (In other words, how many β are there such that $K = \mathbb{F}_3(\beta)$?)