This homework is "due" on Monday November 29 at 11:59pm.
You may also (in addition to or instead of turning this in as a homework, your choice) use this assignment as a quiz. In this case, give yourself one hour to solve two of these problems completely.

1. Let K / F be a Galois extension of degree 4 , where K and F are fields of characteristic different from 2. Show that $\operatorname{Gal}(K / F) \cong C_{2} \times C_{2}$ if and only if there exist $x, y \in F$ such that $K=F(\sqrt{x}, \sqrt{y})$ and none of x, y or $x y$ are squares in F.
2. Let K / F be an extension of odd degree, where F is any field of characteristic 0 .
(a) Let $\alpha \in F$ and assume the polynomial $x^{2}-\alpha$ is irreducible over F. Prove that $x^{2}-\alpha$ is also irreducible over K.
(b) Assume further that K is Galois over F. Let $\alpha \in K$ and let E be the Galois closure of $K(\sqrt{\alpha})$ over F. Prove that $[E: F]=2^{r}[K: F]$ for some $r \geq 0$.
3. Let p be a prime, let F be a field of characteristic 0 , let E be the splitting field over F of an irreducible polynomial of degree p, and let $G=\operatorname{Gal}(E / F)$.
(a) Explain why $[E: F]=p m$ for some integer m with $\operatorname{gcd}(p, m)=1$.
(b) Prove that if G has a normal subgroup of order m, then $[E: F]=p$ (i.e. $m=1$).
(c) Assume $p=5$ and E is not solvable by radicals over F. Show that there are exactly 6 fields K with $F \subseteq K \subseteq E$ and $[E: K]=5$.
(You may quote without proof basic facts about groups of small order.)
4. Let $f(x)$ be an irreducible polynomial in $\mathbb{Q}[x]$ of degree n and let K be the splitting field of $f(x)$ in \mathbb{C}. Assume that $G=\operatorname{Gal}(K / \mathbb{Q})$ is abelian.
(a) Prove that $[K: \mathbb{Q}]=n$ and that $K=\mathbb{Q}(\alpha)$ for every root α of $f(x)$.
(b) Prove that G acts regularly on the set of roots of $f(x)$. (A group acts regularly on a set if it is transitive and the stabilizer of any point is the identity.)
(c) Prove that either all the roots of $f(x)$ are real numbers or none of its roots are real.
(d) Is the converse of (a) true? That is, if K is the splitting field of an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ and $\alpha \in K$ is a root of f such that $K=\mathbb{Q}(\alpha)$, must $\operatorname{Gal}(K / \mathbb{Q})$ be abelian?
5. Let F be a field of characteristic 0 and let $f \in F[x]$ be an irreducible polynomial of degree >1 with splitting field $E \supset F$. Define $\Omega=\{\alpha \in E: f(\alpha)=0\}$.
(a) Let $\alpha \in \Omega$ and let m be a positive integer. If $g \in F[x]$ is the minimal polynomial of α^{m} over F, show that $\left\{\beta^{m}: \beta \in \Omega\right\}$ is the set of roots of g.
(b) Now fix $\alpha \in \Omega$ and suppose that $\alpha r \in \Omega$ for some $r \in F$. Show that, for all $\beta \in \Omega$ and integers $i \geq 0$, we have $\beta r^{i} \in \Omega$. Conclude that r is a root of unity.
(c) If α and r are as in (b) and if m is the multiplicative order of the root of unity r, show that $f(x)=g\left(x^{m}\right)$, where g is the minimal polynomial of α^{m} over F.
