This homework is "due" on Monday November 15 at 11:59pm.
You may also (in addition to or instead of turning this in as a homework, your choice) use this assignment as a quiz. In this case, give yourself one hour to solve two of these problems completely.

1. Let E be the splitting field in \mathbb{C} of the polynomial $p(x)=x^{6}+3 x^{3}-10$ over \mathbb{Q}, and let α be any root of $p(x)$ in E.
(a) Find $[\mathbb{Q}(\alpha): \mathbb{Q}]$. Be sure to justify your answer.
(b) Describe the roots of $p(x)$ in terms of radicals involving rational numbers and roots of unity.
(c) Find $[E: \mathbb{Q}]$. Be sure to justify your answer.
(d) Prove that E contains a unique subfield F with $[F: \mathbb{Q}]=2$.
2. Let $f(x)=x^{6}-6 x^{3}+1$ and let α, β be the two real roots of f with $\alpha>\beta$. You may assume $f(x)$ is irreducible in $\mathbb{Q}[x]$. Let K be the splitting field of $f(x)$ in \mathbb{C}.
(a) Exhibit all six roots of $f(x)$ in terms of radicals involving only integers and powers of ω, where ω is a primitive cube root of unity.
(b) Prove that $K=\mathbb{Q}(\alpha, \omega)$ and deduce that $[K: \mathbb{Q}]=12$. (Hint: What is $\alpha \beta$?)
(c) Prove that $G=\operatorname{Gal}(K / \mathbb{Q})$ has a normal subgroup N such that G / N is the Klein group of order four (this is $C_{2} \times C_{2}$).
3. Let K be the splitting field of $\left(x^{2}-3\right)\left(x^{3}-5\right)$ over \mathbb{Q}.
(a) Find the degree of K over \mathbb{Q}.
(b) Find the isomorphism type of the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$.
(c) Find, with justification, all subfields F of K such that $[F: \mathbb{Q}]=2$.
4. Let $f(x)=x^{4}-8 x^{2}-1 \in \mathbb{Q}[x]$, let α be the real positive root of $f(x)$, let β be a nonreal root of $f(x)$ in \mathbb{C}, and let K be the splitting field of $f(x)$ in \mathbb{C}.
(a) Describe α and β in terms of radicals involving integers, and deduce that $K=$ $\mathbb{Q}(\alpha, \beta)$.
(b) Show that $\left[\mathbb{Q}\left(\beta^{2}\right): \mathbb{Q}\right]=2$ and $\left[\mathbb{Q}(\beta): \mathbb{Q}\left(\beta^{2}\right)\right]=2$. Deduce from this that $f(x)$ is irreducible over \mathbb{Q}.
(c) Show that $[K: \mathbb{Q}]=8$ and that $\operatorname{Gal}(K / \mathbb{Q}) \cong D_{4}$.
