Math 395 - Fall 2021 Qual problem set 10

This homework is "due" on Monday November 15 at 11:59pm.

You may also (in addition to or instead of turning this in as a homework, your choice) use this assignment as a quiz. In this case, give yourself one hour to solve two of these problems completely.

- 1. Let E be the splitting field in \mathbb{C} of the polynomial $p(x) = x^6 + 3x^3 10$ over \mathbb{Q} , and let α be any root of p(x) in E.
 - (a) Find $[\mathbb{Q}(\alpha) : \mathbb{Q}]$. Be sure to justify your answer.
 - (b) Describe the roots of p(x) in terms of radicals involving rational numbers and roots of unity.
 - (c) Find $[E:\mathbb{Q}]$. Be sure to justify your answer.
 - (d) Prove that E contains a unique subfield F with $[F : \mathbb{Q}] = 2$.
- 2. Let $f(x) = x^6 6x^3 + 1$ and let α, β be the two real roots of f with $\alpha > \beta$. You may assume f(x) is irreducible in $\mathbb{Q}[x]$. Let K be the splitting field of f(x) in \mathbb{C} .
 - (a) Exhibit all six roots of f(x) in terms of radicals involving only integers and powers of ω , where ω is a primitive cube root of unity.
 - (b) Prove that $K = \mathbb{Q}(\alpha, \omega)$ and deduce that $[K : \mathbb{Q}] = 12$. (Hint: What is $\alpha\beta$?)
 - (c) Prove that $G = \text{Gal}(K/\mathbb{Q})$ has a normal subgroup N such that G/N is the Klein group of order four (this is $C_2 \times C_2$).
- 3. Let K be the splitting field of $(x^2 3)(x^3 5)$ over \mathbb{Q} .
 - (a) Find the degree of K over \mathbb{Q} .
 - (b) Find the isomorphism type of the Galois group $\operatorname{Gal}(K/\mathbb{Q})$.
 - (c) Find, with justification, all subfields F of K such that $[F : \mathbb{Q}] = 2$.
- 4. Let $f(x) = x^4 8x^2 1 \in \mathbb{Q}[x]$, let α be the real positive root of f(x), let β be a nonreal root of f(x) in \mathbb{C} , and let K be the splitting field of f(x) in \mathbb{C} .
 - (a) Describe α and β in terms of radicals involving integers, and deduce that $K = \mathbb{Q}(\alpha, \beta)$.
 - (b) Show that $[\mathbb{Q}(\beta^2) : \mathbb{Q}] = 2$ and $[\mathbb{Q}(\beta) : \mathbb{Q}(\beta^2)] = 2$. Deduce from this that f(x) is irreducible over \mathbb{Q} .
 - (c) Show that $[K : \mathbb{Q}] = 8$ and that $\operatorname{Gal}(K/\mathbb{Q}) \cong D_4$.