Math 395 - Fall 2021 Beginner Reading 1

This reading is "due" on Monday September 6 at 11:59pm.

This week you are invited to read Chapter 1 of Dummit and Foote. As you go along, you can answer the following questions to test your understanding and bring your attention to the most important concepts.

Section 1.1

- 1. Give an example of a concrete set G with a binary operation.
- 2. The set of integers \mathbb{Z} is an abelian group under the binary operation + (usual addition). What is the identity of this group? What is the inverse of the number 2 under this operation?
- 3. Read Proposition 1 carefully. What is $(a \star b)^{-1}$?
- 4. Read Proposition 2 and its proof carefully. **Why** do the right and left cancellation laws hold in a group?
- 5. Consider again the group \mathbb{Z} with the binary operation + (usual addition). What is the order of the element 2?

Section 1.2

- 6. Suppose that you see the group D_6 . What are the two possibilities for the number of elements it can have? Which one is the case if you are reading Dummit and Foote?
- 7. Write a presentation for D_8 , where D_8 is the dihedral group with 16 elements.

Section 1.3

- 8. Write the cycle decomposition of the element of S_6 that sends 1 to 5, 2 to 6, 3 to 1, 4 to 4, 5 to 3, and 6 to 2.
- 9. Products in S_6 are given by composition. What is $(143) \circ (15)(23)$?
- 10. True or false: (12)(34) = (34)(12).
- 11. True or false: (123)(34) = (34)(123).
- 12. Recall the permutation described in problem 8. What is the order of this permutation?

For a first reading you may skip Sections 1.4 and 1.5, but do note that they cover matrix groups and the quaternion group Q_8 so you can read them if these groups come up later.

Section 1.6

- 13. Is every group homomorphism a group isomorphism?
- 14. How many isomorphism classes of groups of order 6 are there in total?

Section 1.7

15. After you have read Example 5, consider the group $G = S_3$ acting on itself by left multiplication. Explicitly write down the permutation representation of this group action. In other words, this group action gives a group homomorphism $\varphi \colon S_3 \to S_6$, since S_3 has six elements. Give explicitly the image of each element of S_3 under the homomorphism φ .