One.III Reduced Echelon Form

Linear Algebra
Jim Hefferon

http://joshua.smcvt.edu/linearalgebra

Gauss-Jordan reduction

Pivoting

Here is an extension of Gauss's Method with some advantages.
Example Start as usual with elimination operations to get echelon form.

$$
\begin{aligned}
& \begin{array}{rlrlr}
x+y-z & =2 & & x+y-z=2 \\
2 x-y & =-1 & -2 \rho_{1}+\rho_{2} & -3 y+2 z=-5 \\
x-2 y+2 z & =-1 & -1 \rho \rho_{1}+\rho_{3} & -3 y+3 z & =-3
\end{array} \\
& \begin{aligned}
& x+y-z=2 \\
&-1 \rho_{2}+\rho_{3} \\
&-3 y+2 z=-5 \\
& z=2
\end{aligned}
\end{aligned}
$$

Now, instead of doing back substitution, we continue using row operations. First make all the leading entries one.

$$
\begin{array}{rlrl}
(-1 / 3) \rho_{2} & x+y-\quad z & =2 \\
y-(2 / 3) z & =5 / 3 \\
z & =2
\end{array}
$$

Finish by using the leading entries to eliminate upwards, until we can read off the solution.

$$
\begin{aligned}
& x+y-\quad z=2 \\
& y-(2 / 3) z=5 / 3 \\
& z=2
\end{aligned}
$$

Using one entry to clear out the rest of a column is pivoting on that entry.

Example With this system

$$
\begin{aligned}
x-y-2 w & =2 \\
x+y+3 z+w & =1 \\
-y+z-w & =0
\end{aligned}
$$

we can rewrite in matrix notation and do Gauss's Method.

$$
\xrightarrow{-1} \xrightarrow{\rho_{1}+\rho_{2}}\left(\begin{array}{cccc|c}
1 & -1 & 0 & -2 & 2 \\
0 & 2 & 3 & 3 & 1 \\
0 & -1 & 1 & -1 & 0
\end{array}\right) \xrightarrow{(1 / 2) \rho_{2}+\rho_{3}}\left(\begin{array}{cccc|c}
1 & -1 & 0 & -2 & 2 \\
0 & 2 & 3 & 3 & 1 \\
0 & 0 & 5 / 2 & 1 / 2 & -1 / 2
\end{array}\right)
$$

We can combine the operations turning the leading entries to 1 .

$$
\underset{(2 / 5) \rho_{3}}{(1 / 2) \rho_{2}}\left(\begin{array}{cccc|c}
1 & -1 & 0 & -2 & 2 \\
0 & 1 & 3 / 2 & 3 / 2 & -1 / 2 \\
0 & 0 & 1 & 1 / 5 & -1 / 5
\end{array}\right)
$$

Now eliminate upwards.
$\xrightarrow{-(3 / 2) \rho_{3}+\rho_{2}}\left(\begin{array}{cccc|c}1 & -1 & 0 & -2 & 2 \\ 0 & 1 & 0 & 6 / 5 & -1 / 5 \\ 0 & 0 & 1 & 1 / 5 & -1 / 5\end{array}\right) \xrightarrow{\rho_{2}+\rho_{1}}\left(\begin{array}{cccc|c}1 & 0 & 0 & -4 / 5 & 9 / 5 \\ 0 & 1 & 0 & 6 / 5 & -1 / 5 \\ 0 & 0 & 1 & 1 / 5 & -1 / 5\end{array}\right)$

The final augmented matrix

$$
\left(\begin{array}{cccc|c}
1 & 0 & 0 & -4 / 5 & 9 / 5 \\
0 & 1 & 0 & 6 / 5 & -1 / 5 \\
0 & 0 & 1 & 1 / 5 & -1 / 5
\end{array}\right)
$$

gives the parametrized description of the solution set.

$$
\left\{\left.\left(\begin{array}{c}
9 / 5 \\
-1 / 5 \\
-1 / 5 \\
0
\end{array}\right)+\left(\begin{array}{c}
4 / 5 \\
-6 / 5 \\
-1 / 5 \\
1
\end{array}\right) w \right\rvert\, w \in \mathbb{R}\right\}
$$

Gauss-Jordan reduction

This extension of Gauss's Method is the Gauss-Jordan Method or Gauss-Jordan reduction.
1.3 Definition A matrix or linear system is in reduced echelon form if, in addition to being in echelon form, each leading entry is a 1 and is the only nonzero entry in its column.

The cost of using Gauss-Jordan reduction to solve a system is the additional arithmetic. The benefit is that we can just read off the solution set description.

