Describing the solution set

Parametrizing

We've seen that this system has infinitely many solutions.

We want to describe the solution set.
Use the second row to express y in terms of z as $y=-6+4 z$. Now substitute into the first row $-x-(-6+4 z)+3 z=3$ to express x also in terms of z with $x=3-z$.
2.2 Definition In an echelon form linear system the variables that are not leading are free. A variable that we use to describe a family of solutions is a parameter.

We shall routinely parametrize linear systems using the free variables.

Example This system is already in echelon form.

$$
\begin{aligned}
2 x+y+z-w & =5 \\
-y+z+4 w & =6
\end{aligned}
$$

The leading variables are x and y so we will parametrize the solution set with z and w. The second row gives $y=-6+z+4 w$.
Substituting into the first row gives $2 x+(-6+z+4 w)+z-w=5$, so $x=(11 / 2)-z-(3 / 2) w$.
Example This is also already in echelon form.

$$
\begin{aligned}
-2 x+y-z+w & =3 / 2 \\
2 z-w & =1 / 2
\end{aligned}
$$

We parametrize with y and w. The second row gives
$z=1 / 4+(1 / 2) w$. Substituting back into the first row leaves $x=-(7 / 8)+(1 / 2) y+(1 / 4) w$.

$$
\begin{aligned}
x & =-(7 / 8)+(1 / 2) y+(1 / 4) w \\
y & =y \\
z & =1 / 4+(1 / 2) w \\
w & =w
\end{aligned}
$$

