Name:
Problem 1: Find a set that spans the subspace

$$
\left\{\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right): 2 x+y+w=0 \text { and } y+2 z=0\right\}
$$

of \mathbb{R}^{4}.

Hint: Start with solving the system of two equations $2 x+y+w=0$ and $y+2 z=0$.
Solution: Recall that the solutions to a homogeneous system of linear equations have the form

$$
c_{1} \overrightarrow{\beta_{1}}+c_{2} \vec{\beta}_{2}+\cdots+c_{k} \overrightarrow{\beta_{k}},
$$

where the c_{i} 's range over all real numbers and the $\vec{\beta}_{i}$ are some vectors. This is exactly what it means for the vectors $\overrightarrow{\beta_{1}} \ldots \overrightarrow{\beta_{k}}$ to span the set of solutions of the system. So we will just do as usual and use the vectors we get.
We start by solving the system. Because this is a homogeneous system, we omit the column of zeroes.

$$
\left(\begin{array}{llll}
2 & 1 & 0 & 1 \\
0 & 1 & 2 & 0
\end{array}\right) \stackrel{\rho_{1}-\rho_{2}}{\sim}\left(\begin{array}{cccc}
2 & 0 & -2 & 1 \\
0 & 1 & 2 & 0
\end{array}\right) \stackrel{\frac{1}{2} \rho_{1}}{\sim}\left(\begin{array}{cccc}
1 & 0 & -1 & \frac{1}{2} \\
0 & 1 & 2 & 0
\end{array}\right)
$$

We see that z and w are free, and $x=z-\frac{1}{2} w$ and $y=-2 z$. In vector form this is

$$
\left(\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right) z+\left(\begin{array}{c}
-\frac{1}{2} \\
0 \\
0 \\
1
\end{array}\right) w
$$

From this, we can see that the set

$$
\left\{\left(\begin{array}{c}
1 \\
-2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
-\frac{1}{2} \\
0 \\
0 \\
1
\end{array}\right)\right\}
$$

spans the subspace of solutions to these two linear equations.

