Two.II Linear Independence

Linear Algebra
Jim Hefferon

http://joshua.smcvt.edu/linearalgebra

Definition and examples

Linear independence

1.4 Definition A multiset subset of a vector space is linearly independent if none of its elements is a linear combination of the others. Otherwise it is linearly dependent.

Observe that, although this way of writing one vector as a combination of the others

$$
\vec{s}_{0}=c_{1} \vec{s}_{1}+c_{2} \vec{s}_{2}+\cdots+c_{n} \vec{s}_{n}
$$

visually sets off \vec{s}_{0}, algebraically there is nothing special about that vector in that equation. For any \vec{s}_{i} with a coefficient c_{i} that is non- 0 we can rewrite to isolate \vec{s}_{i}.
$\vec{s}_{i}=\left(1 / c_{i}\right) \vec{s}_{0}+\cdots+\left(-c_{i-1} / c_{i}\right) \vec{s}_{i-1}+\left(-c_{i+1} / c_{i}\right) \vec{s}_{i+1}+\cdots+\left(-c_{n} / c_{i}\right) \vec{s}_{n}$
When we don't want to single out any vector we will instead say that $\vec{s}_{0}, \vec{s}_{1}, \ldots, \vec{s}_{n}$ are in a linear relationship and put all of the vectors on the same side.
1.5 Lemma A subset S of a vector space is linearly independent if and only if among its elements the only linear relationship $c_{1} \vec{s}_{1}+\cdots+c_{n} \vec{s}_{n}=\overrightarrow{0}$ (with $\vec{s}_{i} \neq \vec{s}_{j}$ for all $\mathfrak{i} \neq \mathfrak{j}$) is the trivial one $c_{1}=0, \ldots, c_{n}=0$.
Proof If S is linearly independent then no vector \vec{s}_{i} is a linear combination of other vectors from S so there is no linear relationship where some of the \vec{s} 's have nonzero coefficients.

If S is not linearly independent then some \vec{s}_{i} is a linear combination $\vec{s}_{i}=c_{1} \vec{s}_{1}+\cdots+c_{i-1} \vec{s}_{i-1}+c_{i+1} \vec{s}_{i+1}+\cdots+c_{n} \vec{s}_{n}$ of other vectors from S. Subtracting \vec{s}_{i} from both sides gives a relationship involving a nonzero coefficient, the -1 in front of \vec{s}_{i}.

So to decide if a list of vectors $\vec{s}_{0}, \ldots, \vec{s}_{\mathrm{n}}$ is linearly independent, set up the equation $\overrightarrow{0}=c_{0} \vec{s}_{0}+\cdots+c_{n} \vec{s}_{n}$, and calculate whether it has any solutions other than the trivial one where all coefficents are zero.

Example This set of vectors in the plane \mathbb{R}^{2} is linearly independent.

$$
\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

The only solution to this equation

$$
c_{1}\binom{1}{0}+c_{2}\binom{0}{1}=\binom{0}{0}
$$

is trivial $\mathrm{c}_{1}=0, \mathrm{c}_{2}=0$.
Example In the vector space of cubic polynomials $\mathcal{P}_{3}=\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} \mid a_{i} \in \mathbb{R}\right\}$ the set $\{1-x, 1+x\}$ is linearly independent. Setting up the equation $c_{0}(1-x)+c_{1}(1+x)=0$ and considering the constant term and linear term, leads to this system

$$
\begin{aligned}
c_{0}+c_{1} & =0 \\
-c_{0}+c_{1} & =0
\end{aligned}
$$

which has only the trivial solution.

Example The nonzero rows of this matrix form a linearly independent set.

$$
\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \\
0 & 1 & -3 & 1 / 2 \\
0 & 0 & 0 & 5 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We showed in Lemma One.III.2.5 that in any echelon form matrix the nonzero rows form a linearly independent set.
Example This subset of \mathbb{R}^{3} is linearly dependent.

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
3 \\
6
\end{array}\right)\right\}
$$

One way to see that is to spot that the third vector is twice the first plus the second. Another way is to solve the linear system

$$
\begin{aligned}
c_{1}-c_{2}+c_{3} & =0 \\
c_{1}+c_{2}+3 c_{3} & =0 \\
3 c_{1}+6 c_{3} & =0
\end{aligned}
$$

and note that it has more than just the trivial solution.

