Two.II Linear Independence

Linear Algebra Jim Hefferon

http://joshua.smcvt.edu/linearalgebra

Definition and examples

Linear independence

1.4 Definition A multiset subset of a vector space is *linearly independent* if none of its elements is a linear combination of the others. Otherwise it is *linearly dependent*.

Observe that, although this way of writing one vector as a combination of the others

$$\vec{s}_0 = c_1\vec{s}_1 + c_2\vec{s}_2 + \dots + c_n\vec{s}_n$$

visually sets off \vec{s}_0 , algebraically there is nothing special about that vector in that equation. For any \vec{s}_i with a coefficient c_i that is non-0 we can rewrite to isolate \vec{s}_i .

$$\vec{s}_{i} = (1/c_{i})\vec{s}_{0} + \dots + (-c_{i-1}/c_{i})\vec{s}_{i-1} + (-c_{i+1}/c_{i})\vec{s}_{i+1} + \dots + (-c_{n}/c_{i})\vec{s}_{n}$$

When we don't want to single out any vector we will instead say that $\vec{s}_0, \vec{s}_1, \ldots, \vec{s}_n$ are in a *linear relationship* and put all of the vectors on the same side.

1.5 Lemma A subset S of a vector space is linearly independent if and only if among its elements the only linear relationship $c_1\vec{s}_1 + \cdots + c_n\vec{s}_n = \vec{0}$ (with $\vec{s}_i \neq \vec{s}_j$ for all $i \neq j$) is the trivial one $c_1 = 0, \ldots, c_n = 0$.

Proof If S is linearly independent then no vector $\vec{s_i}$ is a linear combination of other vectors from S so there is no linear relationship where some of the \vec{s} 's have nonzero coefficients.

If S is not linearly independent then some $\vec{s_i}$ is a linear combination $\vec{s_i} = c_1 \vec{s_1} + \cdots + c_{i-1} \vec{s_{i-1}} + c_{i+1} \vec{s_{i+1}} + \cdots + c_n \vec{s_n}$ of other vectors from S. Subtracting $\vec{s_i}$ from both sides gives a relationship involving a nonzero coefficient, the -1 in front of $\vec{s_i}$. QED

So to decide if a list of vectors $\vec{s_0}, \ldots, \vec{s_n}$ is linearly independent, set up the equation $\vec{0} = c_0 \vec{s_0} + \cdots + c_n \vec{s_n}$, and calculate whether it has any solutions other than the trivial one where all coefficients are zero. *Example* This set of vectors in the plane \mathbb{R}^2 is linearly independent.

$$\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

The only solution to this equation

$$c_1\begin{pmatrix}1\\0\end{pmatrix}+c_2\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}0\\0\end{pmatrix}$$

is trivial $c_1 = 0$, $c_2 = 0$.

Example In the vector space of cubic polynomials $\mathcal{P}_3 = \{a_0 + a_1x + a_2x^2 + a_3x^3 \mid a_i \in \mathbb{R}\}$ the set $\{1 - x, 1 + x\}$ is linearly independent. Setting up the equation $c_0(1-x) + c_1(1+x) = 0$ and considering the constant term and linear term, leads to this system

$$c_0 + c_1 = 0$$

 $-c_0 + c_1 = 0$

which has only the trivial solution.

Example The nonzero rows of this matrix form a linearly independent set.

$$\begin{pmatrix} 2 & 0 & 1 & -1 \\ 0 & 1 & -3 & 1/2 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

We showed in Lemma One.III.2.5 that in any echelon form matrix the nonzero rows form a linearly independent set.

Example This subset of \mathbb{R}^3 is linearly dependent.

$$\left\{ \begin{pmatrix} 1\\1\\3 \end{pmatrix}, \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\3\\6 \end{pmatrix} \right\}$$

One way to see that is to spot that the third vector is twice the first plus the second. Another way is to solve the linear system

$$c_1 - c_2 + c_3 = 0c_1 + c_2 + 3c_3 = 03c_1 + 6c_3 = 0$$

and note that it has more than just the trivial solution.