Vector Spaces and Linear Systems

Row space

3.1 Definition The row space of a matrix is the span of the set of its rows. The row rank is the dimension of this space, the number of linearly independent rows.
3.3 Lemma If two matrices A and B are related by a row operation

$$
A \xrightarrow{\rho_{i} \leftrightarrow \rho_{j}} B \text { or } A \xrightarrow{k \rho_{i}} B \text { or } A \xrightarrow{k \rho_{i}+\rho_{j}} B
$$

(for $i \neq j$ and $k \neq 0$) then their row spaces are equal. Hence, row-equivalent matrices have the same row space and therefore the same row rank.
Proof Corollary One.III.2.4 shows that when $A \longrightarrow B$ then each row of B is a linear combination of the rows of A. That is, in the above terminology, each row of B is an element of the row space of A. Then Rowspace $(B) \subseteq$ Rowspace (A) follows because a member of the set Rowspace (B) is a linear combination of the rows of B, so it is a combination of combinations of the rows of A, and by the Linear Combination Lemma is also a member of Rowspace (A).

Column space

3.6 Definition The column space of a matrix is the span of the set of its columns. The column rank is the dimension of the column space, the number of linearly independent columns.
Example This system

$$
\begin{aligned}
2 x+3 y & =d_{1} \\
-x+(1 / 2) y & =d_{2}
\end{aligned}
$$

has a solution for those $d_{1}, d_{2} \in \mathbb{R}$ that we can find to satisfy this vector equation.

$$
x \cdot\binom{2}{-1}+y \cdot\binom{3}{1 / 2}=\binom{d_{1}}{d_{2}} \quad x, y \in \mathbb{R}
$$

That is, the system has a solution if and only if the vector on the right is in the column space of this matrix.

$$
\left(\begin{array}{cc}
2 & 3 \\
-1 & 1 / 2
\end{array}\right)
$$

Example The column rank of this matrix

$$
\left(\begin{array}{cccccc}
2 & -1 & 3 & 1 & 0 & 1 \\
3 & 0 & 1 & 1 & 4 & -1 \\
4 & -2 & 6 & 2 & 0 & 2 \\
1 & 0 & 3 & 0 & 0 & 2
\end{array}\right)
$$

is 3 . Its largest set of linearly independent columns is size 3 because that's the size of its largest set of linearly independent rows.
$\xrightarrow[\substack{-(3 / 2) \rho_{1}+\rho_{2} \\-2 \rho_{1}+\rho_{3} \\-(1 / 2) \rho_{1}+\rho_{4}}]{-(1 / 3) \rho_{2}+\rho_{4}} \xrightarrow{\rho_{3} \leftrightarrow \rho_{4}}\left(\begin{array}{cccccc}2 & -1 & 3 & 1 & 0 & 1 \\ 0 & 3 / 2 & -7 / 2 & -1 / 2 & 4 & -5 / 2 \\ 0 & 0 & 8 / 3 & -1 / 3 & -4 / 3 & 7 / 3 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

