Two.III Basis and Dimension

Linear Algebra
Jim Hefferon

http://joshua.smcvt.edu/linearalgebra

Basis

Definition of basis

1.1 Definition A basis for a vector space is a sequence of vectors that is linearly independent and that spans the space.

Because a basis is a sequence, meaning that bases are different if they contain the same elements but in different orders, we denote it with angle brackets $\left\langle\vec{\beta}_{1}, \vec{\beta}_{2}, \ldots\right\rangle$.
Example This is a basis for \mathbb{R}^{2}.

$$
\left\langle\binom{ 1}{-1},\binom{1}{1}\right\rangle
$$

It is linearly independent.

$$
c_{1}\binom{1}{-1}+c_{2}\binom{1}{1}=\binom{0}{0} \Longrightarrow \begin{gathered}
c_{1}+c_{2}=0 \\
-c_{1}+c_{2}=0
\end{gathered} \Longrightarrow c_{1}=0, c_{2}=0
$$

And it spans \mathbb{R}^{2} since

$$
c_{1}\binom{1}{-1}+c_{2}\binom{1}{1}=\binom{x}{y} \Longrightarrow \begin{array}{r}
c_{1}+c_{2}=x \\
-c_{1}+c_{2}=y
\end{array}
$$

has the solution $c_{1}=(1 / 2) x-(1 / 2) y$ and $c_{2}=(1 / 2) x+(1 / 2) y$.
1.13 Definition In a vector space with basis B the representation of \vec{v} with respect to B is the column vector of the coefficients used to express \vec{v} as a linear combination of the basis vectors:

$$
\operatorname{Rep}_{\mathrm{B}}(\vec{v})=\left(\begin{array}{c}
c_{1} \\
\mathrm{c}_{2} \\
\vdots \\
c_{n}
\end{array}\right)
$$

where $B=\left\langle\vec{\beta}_{1}, \ldots, \vec{\beta}_{n}\right\rangle$ and $\vec{v}=c_{1} \vec{\beta}_{1}+c_{2} \vec{\beta}_{2}+\cdots+c_{n} \vec{\beta}_{n}$. The $c^{\prime} s$ are the coordinates of \vec{v} with respect to B.

Example In the vector space of linear polynomials
$\mathcal{P}_{1}=\{a+b x \mid a, b \in \mathbb{R}\}$ one basis is $B=\langle 1+x, 1-x\rangle$.
Check that is a basis by verifying that it is linearly independent $0=c_{1}(1+x)+c_{2}(1-x) \Longrightarrow 0=c_{1}+c_{2}, 0=c_{1}-c_{2} \Longrightarrow c_{1}=c_{2}=0$ and that it spans the space.

$$
a+b x=c_{1}(1+x)+c_{2}(1-x) \Longrightarrow c_{1}=(a+b) / 2, c_{2}=(a-b) / 2
$$

Example This is a basis for $\mathcal{M}_{2 \times 2}$.

$$
\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
3 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 4
\end{array}\right)\right\rangle
$$

This is another one.

$$
\left\langle\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\right\rangle
$$

