3.14 Corollary Where the matrix A is $n \times n$, these statements
(1) the rank of A is n
(2) A is nonsingular
(3) the rows of A form a linearly independent set
(4) the columns of A form a linearly independent set
(5) any linear system whose matrix of coefficients is A has one and only one solution
are equivalent.
Proof Clearly (1) $\Longleftrightarrow(2) \Longleftrightarrow(3) \Longleftrightarrow(4)$. The last, (4) \Longleftrightarrow (5), holds because a set of n column vectors is linearly independent if and only if it is a basis for \mathbb{R}^{n}, but the system

$$
c_{1}\left(\begin{array}{c}
a_{1,1} \\
a_{2,1} \\
\vdots \\
a_{m, 1}
\end{array}\right)+\cdots+c_{n}\left(\begin{array}{c}
a_{1, n} \\
a_{2, n} \\
\vdots \\
a_{m, n}
\end{array}\right)=\left(\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{m}
\end{array}\right)
$$

has a unique solution for all choices of $d_{1}, \ldots, d_{n} \in \mathbb{R}$ if and only if the vectors of a 's on the left form a basis.

QED

Row space

3.1 Definition The row space of a matrix is the span of the set of its rows. The row rank is the dimension of this space, the number of linearly independent rows.
3.3 Lemma If two matrices A and B are related by a row operation

$$
A \xrightarrow{\rho_{i} \leftrightarrow \rho_{j}} B \text { or } A \xrightarrow{k \rho_{i}} B \text { or } A \xrightarrow{k \rho_{i}+\rho_{j}} B
$$

(for $i \neq j$ and $k \neq 0$) then their row spaces are equal. Hence, row-equivalent matrices have the same row space and therefore the same row rank.
Proof Corollary One.III.2.4 shows that when $A \longrightarrow B$ then each row of B is a linear combination of the rows of A. That is, in the above terminology, each row of B is an element of the row space of A. Then Rowspace $(B) \subseteq$ Rowspace (A) follows because a member of the set Rowspace (B) is a linear combination of the rows of B, so it is a combination of combinations of the rows of A, and by the Linear Combination Lemma is also a member of Rowspace (A).

For the other set containment, recall Lemma One.III.1.5, that row operations are reversible so $A \longrightarrow B$ if and only if $B \longrightarrow A$. Then Rowspace $(A) \subseteq$ Rowspace (B) follows as in the previous paragraph.

QED
3.3 Lemma The nonzero rows of an echelon form matrix make up a linearly independent set.
Proof Lemma One.III.2.5 says that no nonzero row of an echelon form matrix is a linear combination of the other rows. This result just restates that in this chapter's terminology.

QED

Example The matrix before Gauss's Method and the matrix after have equal row spaces.

$$
M=\left(\begin{array}{ccccc}
1 & 2 & 1 & 0 & 3 \\
-1 & -2 & 2 & 2 & 0 \\
2 & 4 & 5 & 2 & 9
\end{array}\right) \underset{-2 \rho_{1}+\rho_{3}}{\stackrel{\rho_{1}+\rho_{2}}{ }} \xrightarrow{-\rho_{2}+\rho_{3}}\left(\begin{array}{lllll}
1 & 2 & 1 & 0 & 3 \\
0 & 0 & 3 & 2 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The nonzero rows of the latter matrix form a basis for Rowspace (M).

$$
B=\left\langle\left(\begin{array}{lllll}
1 & 2 & 1 & 0 & 3
\end{array}\right),\left(\begin{array}{lllll}
0 & 0 & 3 & 2 & 3
\end{array}\right)\right\rangle
$$

The row rank is 2 .
So Gauss's Method produces a basis for the row space of a matrix. It has found the "repeat" information, that M's third row is three times the first plus the second, and eliminated that extra row.

Transpose

3.8 Definition The transpose of a matrix is the result of interchanging its rows and columns, so that column j of the matrix A is row j of A^{\top} and vice versa.
Example To find a basis for the column space of a matrix,

$$
\left(\begin{array}{cc}
2 & 3 \\
-1 & 1 / 2
\end{array}\right)
$$

transpose,

$$
\left(\begin{array}{cc}
2 & 3 \\
-1 & 1 / 2
\end{array}\right)^{\top}=\left(\begin{array}{cc}
2 & -1 \\
3 & 1 / 2
\end{array}\right)
$$

reduce,

$$
\left(\begin{array}{cc}
2 & -1 \\
3 & 1 / 2
\end{array}\right) \xrightarrow{(-3 / 2) \rho_{1}+\rho_{2}}\left(\begin{array}{cc}
2 & -1 \\
0 & 2
\end{array}\right)
$$

and transpose back.

$$
\left(\begin{array}{cc}
2 & -1 \\
0 & 2
\end{array}\right)^{\top}=\left(\begin{array}{cc}
2 & 0 \\
-1 & 2
\end{array}\right)
$$

This basis

$$
B=\left\langle\binom{ 2}{-1},\binom{0}{2}\right\rangle
$$

shows that the column space is the entire vector space \mathbb{R}^{2}.

