Three.III Computing Linear Maps

Linear Algebra
Jim Hefferon

http://joshua.smcvt.edu/linearalgebra

Representing Linear Maps with Matrices

Linear maps are determined by the action on a basis

Fix a domain space V with basis $\left\langle\vec{\beta}_{1}, \ldots, \vec{\beta}_{n}\right\rangle$, and a codomain space W. We've seen that to specify the action of a homomorphism $h: V \rightarrow W$ on all domain vectors, we need only specify its action on the basis elements.

$$
\begin{equation*}
h(\vec{v})=h\left(c_{1} \cdot \vec{\beta}_{1}+\cdots+c_{n} \cdot \vec{\beta}_{n}\right)=c_{1} \cdot h\left(\vec{\beta}_{1}\right)+\cdots+c_{n} \cdot h\left(\vec{\beta}_{n}\right) \tag{*}
\end{equation*}
$$

We've called this extending the action linearly from the basis to the entire domain. We now introduce a scheme for these calculations.

Example Let the domain be $\mathrm{V}=\mathcal{P}_{2}$ and the codomain be $\mathrm{W}=\mathbb{R}^{2}$, with these bases.

$$
\mathrm{B}_{V}=\left\langle 1,1+x, 1+x+x^{2}\right\rangle \quad \mathrm{B}_{\mathrm{W}}=\left\langle\binom{ 2}{0},\binom{-1}{1}\right\rangle
$$

Suppose that $h: \mathcal{P}_{2} \rightarrow \mathbb{R}^{2}$ has this action on the domain basis.

$$
h(1)=\binom{0}{1} \quad h(1+x)=\binom{3}{2} \quad h\left(1+x+x^{2}\right)=\binom{-2}{-1}
$$

Example Again consider projection onto the x -axis

$$
\binom{a}{b} \stackrel{\pi}{\longmapsto}\binom{a}{0}
$$

but this time take the input and output bases to be the standard.

$$
\mathrm{B}=\mathrm{D}=\varepsilon_{2}=\left\langle\binom{ 1}{0},\binom{0}{1}\right\rangle
$$

We have

$$
\begin{aligned}
& \binom{1}{0} \stackrel{\pi}{\longmapsto}\binom{1}{0} \quad \text { so } \operatorname{Rep}_{\mathrm{D}}\left(\pi\left(\vec{\beta}_{1}\right)\right)=\binom{1}{0} \\
& \binom{0}{1} \stackrel{\pi}{\longmapsto}\binom{0}{0} \quad \text { so } \operatorname{Rep}_{\mathrm{D}}\left(\pi\left(\vec{\beta}_{2}\right)\right)=\binom{0}{0}
\end{aligned}
$$

and this is $\operatorname{Rep}_{\varepsilon_{2}, \varepsilon_{2}}(\pi)$.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

Example Consider the domain \mathbb{R}^{2} and the codomain \mathbb{R}. Recall that with respect to the standard basis, a vector represents itself.

$$
\operatorname{Rep}_{\varepsilon_{2}}\left(\binom{-2}{2}\right)=\binom{-2}{2}_{\varepsilon_{2}}
$$

To represent $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$

$$
\binom{a}{b} \stackrel{h}{\longmapsto} 2 a+3 b
$$

with respect to \mathcal{E}_{2} and \mathcal{E}_{1}, first find the effect of h on the domain's basis.

$$
\binom{1}{0} \mapsto 2 \quad\binom{0}{1} \mapsto 3
$$

Represent those with respect to the codomain's basis.

$$
\operatorname{Rep}_{\varepsilon_{1}}\left(h\left(\vec{e}_{1}\right)\right)=(2) \quad \operatorname{Rep}_{\varepsilon_{1}}\left(h\left(\vec{e}_{2}\right)\right)=(3)
$$

This is 1×2 matrix representation.

$$
\mathrm{H}=\operatorname{Rep}_{\varepsilon_{2}, \varepsilon_{1}}(\mathrm{~h})=\left(\begin{array}{ll}
2 & 3
\end{array}\right)
$$

Proof This formalizes the example that began this subsection. See Exercise 32 .

QED
1.5 Definition The matrix-vector product of a $\mathfrak{m} \times \mathfrak{n}$ matrix and a $\mathrm{n} \times 1$ vector is this.

$$
\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \ldots & a_{1, n} \\
a_{2,1} & a_{2,2} & \ldots & a_{2, n} \\
& \vdots & & \\
a_{m, 1} & a_{m, 2} & \ldots & a_{m, n}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{1,1} c_{1}+\cdots+a_{1, n} c_{n} \\
a_{2,1} c_{1}+\cdots+a_{2, n} c_{n} \\
\vdots \\
a_{m, 1} c_{1}+\cdots+a_{m, n} c_{n}
\end{array}\right)
$$

Example We can perform the operation without any reference to spaces and bases.

$$
\left(\begin{array}{ccc}
3 & 1 & 2 \\
0 & -2 & 5
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
-3
\end{array}\right)=\binom{3 \cdot 4+1 \cdot(-1)+2 \cdot(-3)}{0 \cdot 4-2 \cdot(-1)+5 \cdot(-3)}=\binom{5}{-13}
$$

Example Recall also that the map $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with this action

$$
\binom{a}{b} \stackrel{h}{\longmapsto} 2 a+3 b
$$

is represented with respect to the standard bases $\mathcal{E}_{2}, \mathcal{E}_{1}$ by a 1×2 matrix.

$$
\operatorname{Rep}_{\varepsilon_{2}, \varepsilon_{1}}(h)=\left(\begin{array}{ll}
2 & 3
\end{array}\right)
$$

The domain vector

$$
\vec{v}=\binom{-2}{2} \quad \operatorname{Rep}_{\varepsilon_{2}}(\vec{v})=\binom{-2}{2}
$$

has this image.

$$
\operatorname{Rep}_{\varepsilon_{1}}(h(\vec{v}))=\left(\begin{array}{ll}
2 & 3
\end{array}\right)\binom{-2}{2}=(2)_{\varepsilon_{1}}
$$

Since this is a representation with respect to the standard basis \mathcal{E}_{1}, meaning that vectors represent themselves, the image is $h(\vec{v})=2$.

