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Representing Linear Maps with Matrices



Linear maps are determined by the action on a basis
Fix a domain space V with basis h~�1, . . . , ~�ni, and a codomain

space W. We’ve seen that to specify the action of a homomorphism
h : V ! W on all domain vectors, we need only specify its action on
the basis elements.

h(~v) = h(c1 · ~�1 + · · ·+ cn · ~�n) = c1 · h(~�1) + · · ·+ cn · h(~�n) (⇤)

We’ve called this extending the action linearly from the basis to the
entire domain. We now introduce a scheme for these calculations.

Example Let the domain be V = P2 and the codomain be W = R2,
with these bases.

BV = h1, 1+ x, 1+ x+ x2i BW = h
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Suppose that h : P2 ! R2 has this action on the domain basis.
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Example Again consider projection onto the x-axis
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but this time take the input and output bases to be the standard.

B = D = E2 = h
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We have
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so RepD(⇡(~�1)) =
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so RepD(⇡(~�2)) =
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and this is RepE2,E2
(⇡). ✓
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Example Consider the domain R2 and the codomain R. Recall that
with respect to the standard basis, a vector represents itself.
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To represent h : R2 ! R
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with respect to E2 and E1, first find the effect of h on the domain’s
basis. ✓
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Represent those with respect to the codomain’s basis.

RepE1
(h(~e1)) =
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2
�
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This is 1⇥2 matrix representation.

H = RepE2,E1
(h) =

�
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�



Proof This formalizes the example that began this subsection. See
Exercise 32 . QED

1.5 Definition The matrix-vector product of a m⇥n matrix and a
n⇥1 vector is this.
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a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
am,1 am,2 . . . am,n
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a1,1c1 + · · ·+ a1,ncn
a2,1c1 + · · ·+ a2,ncn

...
am,1c1 + · · ·+ am,ncn
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Example We can perform the operation without any reference to
spaces and bases.
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A =

✓
3 · 4+ 1 · (-1) + 2 · (-3)
0 · 4- 2 · (-1) + 5 · (-3)
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Example Recall also that the map h : R2 ! R with this action
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is represented with respect to the standard bases E2,E1 by a 1⇥2

matrix.
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The domain vector
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has this image.
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Since this is a representation with respect to the standard basis E1,
meaning that vectors represent themselves, the image is h(~v) = 2.


