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Sums and Scalar Products



Definition of matrix sum and scalar multiple
1.3 Definition The scalar multiple of a matrix is the result of

entry-by-entry scalar multiplication. The sum of two same-sized
matrices is their entry-by-entry sum.
Example Where

A =

✓
1 -1

2 3

◆
B =

✓
0 0 2

9 -1/2 5

◆
C =

✓
1 0

8 -1

◆

Then
A+ C =

✓
2 -1

10 2

◆
5B =

✓
0 0 10

45 -5/2 25

◆

None of these is defined: A + B, B +A, B + C, C + B, because the
sizes don’t match.



Matrix Multiplication



Representing composition
Another function operation, besides scalar multiplication and

addition, is composition.
2.1 Lemma The composition of linear maps is linear.

Proof Let h : V ! W and g : W ! U be linear. The calculation
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shows that g � h : V ! U preserves linear combinations, and so is
linear. QED

We next do an exploratory calculation to see how the matrix
representations of the two functions combine to make the matrix
representation of their composition.



Example Consider two linear functions h : V ! W and g : W ! X

represented as here.
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✓
8 7 11

9 10 12

◆

We want to see how these two representations combine to give the
representation of the map g � h : V ! X.

We start with the action of h on a ~v 2 V.
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Of course we represent application of h by doing the matrix vector
multiplication.



Next apply g.
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Gather terms.

=

✓
(8 · 3+ 7 · 2+ 11 · 4)v

1

+ (8 · 1+ 7 · 5+ 11 · 6)v
2

(9 · 3+ 10 · 2+ 12 · 4)v
1

+ (9 · 1+ 10 · 5+ 12 · 6)v
2

◆

Rewrite as a matrix-vector multiplication.

=

✓
8 · 3+ 7 · 2+ 11 · 4 8 · 1+ 7 · 5+ 11 · 6
9 · 3+ 10 · 2+ 12 · 4 9 · 1+ 10 · 5+ 12 · 6
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So here is how the two starting matrices combine.

✓
8 7 11

9 10 12

◆0

@
3 1

2 5

4 6

1

A =

✓
8 · 3+ 7 · 2+ 11 · 4 8 · 1+ 7 · 5+ 11 · 6
9 · 3+ 10 · 2+ 12 · 4 9 · 1+ 10 · 5+ 12 · 6

◆



Definition of matrix multiplication
2.3 Definition The matrix-multiplicative product of the m⇥r

matrix G and the r⇥n matrix H is the m⇥n matrix P, where
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so that the i, j-th entry of the product is the dot product of the i-th
row of the first matrix with the j-th column of the second.
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Example

✓
3 1 6

2 5 9

◆0

@
2 0 4

1 -3 5

4 2 7

1

A =

✓
31 9 59

45 3 96

◆



Example This product is not defined because the number of columns
on the left must equal the number of rows on the right.

0

@
1 3 -1

0 0 0

2 0 0

1

A
✓
5 7 1

2 2 0

◆

Example Square matrices of the same size have a defined product.
0

@
1 3 -1

0 0 0

2 0 0

1
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@
5 7 1

2 2 0

1 -1 2

1
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0

@
10 14 -1

0 0 0

10 14 2

1

A

This reflects the fact that we can compose two functions from a space
to itself f, g : V ! V.



Order, dimensions, and sizes
These two functions can be composed

h : V ! W g : W ! X

because the codomain of f is the domain of g.
Observe about the order of the notation: in writing the

composition g � h, the function g is written first (meaning leftmost)
but it is applied second.

~v
h7�! h(~v)

g7�! g(h(~v))

That order carries over to matrices: g � h is represented by GH.
Also consider the dimensions of the spaces.

dimension n space h�! dimension r space g�! dimension m space

The m⇥n matrix GH is the product of an m⇥r matrix G and a r⇥n

matrix H. Briefly, m⇥r times r⇥n equals m⇥n.



Matrix multiplication is not commutative
Function composition is in general not a commutative operation—

cos(
p
x) is different than

p
cos(x). This holds even in the special case

of composition of linear functions.
Example Changing the order in which we multiply these matrices

✓
3 3

0 4

◆✓
-2 6

6 5

◆
=

✓
12 33

24 20

◆

changes the result.
✓
-2 6

6 5

◆✓
3 3

0 4

◆
=

✓
-6 18

18 38

◆

Example The product of these matrices
✓
3 4

0 2

◆ ✓
8 12 0

-4 0 1/2

◆

is defined in one order and not defined in the other.



Although the matrix operation of multiplication does not have the
property of being commutative, it does have some nice algebraic
properties.

2.12 Theorem If F, G, and H are matrices, and the matrix products
are defined, then the product is associative (FG)H = F(GH) and
distributes over matrix addition F(G + H) = FG + FH and
(G+H)F = GF+HF.
Proof Associativity holds because matrix multiplication represents
function composition, which is associative: the maps (f � g) � h and
f � (g � h) are equal as both send ~v to f(g(h(~v))).

Distributivity is similar. For instance, the first one goes
f � (g+ h) (~v) = f

�
(g+ h)(~v)

�
= f

�
g(~v) + h(~v)

�
= f(g(~v)) + f(h(~v)) =

f � g(~v) + f � h(~v) (the third equality uses the linearity of f).
Right-distributivity goes the same way. QED


